Bases: flotilla.data_model.base.BaseData
Instantiate a object for percent spliced in (PSI) scores
Parameters: | data : pandas.DataFrame
n_components : int
binsize : float
excluded_max : float
included_max : float
|
---|
Notes
‘thresh’ from BaseData is not used.
Assigned modalities for these samples and features.
Parameters: | sample_ids : list of str, optional
feature_ids : list of str, optional
data : pandas.DataFrame, optional
|
---|---|
Returns: | modality_assignments : pandas.Series
|
Count the number of each modalities of these samples and features
Parameters: | sample_ids : list of str
feature_ids : list of str
data : pandas.DataFrame, optional
|
---|---|
Returns: | modalities_counts : pandas.Series
|
Plot histogram of distances between singles and pooled
Make grouped barplots of the number of modalities per group
Parameters: | sample_ids : None or list of str
feature_ids : None or list of str
color : None or matplotlib color
x_offset : numeric
|
---|
Plot “lavalamp” scatterplot of each event
Parameters: | sample_ids : None or list of str
feature_ids : None or list of str
color : None or matplotlib color
x_offset : numeric
|
---|
Plot events modality assignments in NMF space
This will calculate modalities on all samples provided, without grouping them by celltype. This is because each NMF axis can only show one set of sample ids’ modalties.
Parameters: | sample_ids : list of str
feature_ids : list of str
data : pandas.DataFrame, optional
ax : matplotlib.axes.Axes object
title : str
|
---|
Return splicing events which pooled samples are consistently different from the single cells.
Parameters: | singles_ids : list-like
pooled_ids : list-like
feature_ids : None or list-like
fraction_diff_thresh : float |
---|---|
Returns: | large_diff : pandas.DataFrame
|