
Chapter 7

Regularized Least-Squares

Classification

Ryan Rifkin, Gene Yeo and Tomaso Poggio

Abstract.We consider the solution of binary classification problems via Tikhonov

regularization in a Reproducing Kernel Hilbert Space using the square loss, and

denote the resulting algorithm Regularized Least-Squares Classification (RLSC).

We sketch the historical developments that led to this algorithm, and demon-

strate empirically that its performance is equivalent to that of the well-known

Support Vector Machine on several datasets. Whereas training an SVM requires

solving a convex quadratic program, training RLSC requires only the solution

of a single system of linear equations. We discuss the computational tradeoffs

between RLSC and SVM, and explore the use of approximations to RLSC in sit-

uations where the full RLSC is too expensive. We also develop an elegant leave-

one-out bound for RLSC that exploits the geometry of the algorithm, making a

connection to recent work in algorithmic stability.

131

132 R. Rifkin, G. Yeo, T. Poggio

7.1 Introduction

We assume that X and Y are two sets of random variables. We are given a train-

ing set S = (x1, y1), . . . , (xℓ, yℓ), consisting of ℓ independent identically distributed
samples drawn from the probability distribution on X × Y . The joint and conditional
probabilities over X and Y obey the following relation:

p(x, y) = p(y|x) · p(x)

It is crucial to note that we view the joint distribution p(x, y) as fixed but unknown,
since we are only given the ℓ examples.

In this chapter, we consider the n-dimensional binary classification problem, where
the ℓ training examples satisfy xi ∈ R

n and yi ∈ {−1, 1} for all i. Denoting the training
set by S, our goal is to learn a function fS that will generalize well on new examples.
In particular, we would like

Pr(sgn(fS(x))) 6= y

to be as small as possible, where the probability is taken over the distribution X × Y ,
and sgn(f(x)) denotes the sign of f(x). Put differently, we want to minimize the
expected risk, defined as

Iexp[f] =

∫

X×Y

isgn(f(x)) 6=ydP,

where ip denotes an indicator function that evaluates to 1 when p is true and 0 oth-
erwise. Since we do not have access to p(x, y), we cannot minimize Iexp[f] directly.
We instead consider the empirical risk minimization problem, which involves the min-
imization of:

Iemp[f] =
1

ℓ

ℓ∑

i=1

isgn(f(xi)) 6=yi
.

This problem is ill-defined, because we have not specified the set of functions that we
consider when minimizing Iemp[f]. If we require that the solution fS lie in a bounded
convex subset of a Reproducing Kernel Hilbert Space H defined by a positive definite
kernel function K [5, 6] (the norm of a function in this space is denoted by ||f ||K), the
regularized empirical risk minimization problem (also known as Ivanov Regularization)
is well-defined:

min
fS∈H,||fS ||K≤R

1

ℓ

ℓ∑

i=1

if(xi) 6=yi
.

For Ivanov regularization, we can derive (probabilistic) generalization error bounds
[7] that bound the difference between Iexp[fS] and Iemp[fS]; these bounds will depend
on H and R (in particular, on the VC-dimension of {f : f ∈ H ∧ ||f ||2K ≤ R}) and
ℓ. Since Iemp[f] can be measured, this in turn allows us to (probabilistically) upper-
bound Iexp[f]. The minimization of the (non-smooth, non-convex) 0-1 loss if(x) 6=y

induces an NP-complete optimization problem, which motivates replacing isgn(f(x)) 6=y

with a smooth, convex loss function V (y, f(x)), thereby making the problem well-posed
[1, 2, 3, 4]. If V upper bounds the 0-1 loss function, then the upper bound we derive
on any Iexp[fS] with respect to V will also be an upper bound on Iexp[fS] with respect
to the 0-1 loss.

Regularized Least-Squares Classification 133

In practice, although Ivanov regularization with a smooth loss function V is not
necessarily intractable, it is much simpler to solve instead the closely related (via
Lagrange multipliers) Tikhonov minimization problem

min
f∈H

1

ℓ

ℓ∑

i=1

V (yi, f(xi)) + λ||f ||2K . (7.1)

Whereas the Ivanov form minimizes the empirical risk subject to a bound on ||f ||2K ,
the Tikhonov form smoothly trades off ||f ||2K and the empirical risk; this tradeoff
is controlled by the regularization parameter λ. Although the algorithm does not
explicitly include a bound on ||f ||2K , using the fact that the all-0 function f(x) ≡ 0 ∈ H,
we can easily show that the function f ∗ that solves the Tikhonov regularization problem
satisfies ||f ||2K ≤ B

ℓ
, where B is an upper bound on V (y, 0), which will always exist

given that y ∈ {−1, 1}. This allows us to immediately derive bounds for Tikhonov
regularization that have the same form as the original Ivanov bounds (with weaker
constants). Using the notion of uniform stability developed by Bousquet and Elisseef
[8], we can also more directly derive bounds that apply to Tikhonov regularization in
an RKHS.

For our purposes, there are two key facts about RKHS’s that allow us to greatly
simplify (7.1). The first is the Representer Theorem [9, 10], stating that, under very
general conditions on the loss function V , the solution f ∗ to the Tikhonov regularization
problem can be written in the following form:

f ∗(x) =
ℓ∑

i=1

ciK(x,xi).

The second is that, for functions in the above form,

||f ||2K = cT Kc,

where K now denotes the ℓ-by-ℓ matrix whose (i, j)’th entry is K(xi,xj).
1 The

Tikhonov regularization problem becomes the problem of finding the ci:

min
c∈Rℓ

1

ℓ

ℓ∑

i=1

V (yi,

ℓ∑

j=1

ciK(xi,xj)) + λcT Kc. (7.2)

A specific learning scheme (algorithm) is now determined by the choice of the loss
function V . The most natural choice of loss function, from a pure learning theory
perspective, is the L0 or misclassification loss, but as mentioned previously, this results
in an intractable NP-complete optimization problem. The Support Vector Machine [7]
arises by choosing V to be the hinge loss

V (y, f(x)) =

{
0 if yf(x) ≥ 1
1 − yf(x) otherwise

1This overloading of the term K to refer to both the kernel function and the kernel matrix is some-
what unfortunate, but the usage is clear from context, and the practice is standard in the literature.

134 R. Rifkin, G. Yeo, T. Poggio

The Support Vector Machine leads to a convex quadratic programming problem in ℓ

variables, and has been shown to provide very good performance in a wide range of
contexts.

In this chapter, we focus on the simple square-loss function

V (y, f(x)) = (y − f(x))2. (7.3)

This choice seems very natural for regression problems, in which the yi are real-valued,
but at first glance seems a bit odd for classification — for examples in the positive class,
large positive predictions are almost as costly as large negative predictions. However,
we will see that empirically, this algorithm performs as well as the Support Vector
Machine, and in certain situations offers compelling practical advantages.

7.2 The RLSC Algorithm

Substituting (7.3) into (7.2), and dividing by two for convenience, the RLSC problem
can be written as:

min F (c) = min
c∈Rℓ

1

2ℓ

ℓ∑

i=1

(y − Kc)T (y − Kc) +
λ

2
cT Kc.

This is a convex differentiable function, so we can find the minimizer simply by taking
the derivative with respect to c:

∇Fc =
1

ℓ
(y − Kc)T (−K) + λKc

= −
1

ℓ
Ky +

1

ℓ
K2c + λKc.

The kernel matrix K is positive semidefinite, so ∇Fc = 0 is a necessary and sufficient
condition for optimality of a candidate solution c. By multiplying through by K−1 if
K is invertible, or reasoning that we only need a single solution if K is not invertible,
the optimal K can be found by solving

(K + λℓI)c = y, (7.4)

where I denotes an appropriately-sized identity matrix. We see that a Regularized
Least-Squares Classification problem can be solved by solving a single system of linear
equations.

Unlike the case of SVMs, there is no algorithmic reason to define the dual of this
problem. However, by deriving a dual, we can make some interesting connections. We
rewrite our problems as:

min
c∈Rℓ

1
2ℓ

ξT ξ + λ
2
cT Kc

subject to : Kc − y = ξ

Regularized Least-Squares Classification 135

We introduce a vector of dual variables u associated with the equality constraints,
and form the Lagrangian:

L(c, ξ,u) =
1

2ℓ
ξT ξ +

λ

2
cT Kc − uT (Kc − y − ξ).

We want to minimize the Lagrangian with respect to c and ξ, and maximize it with
respect to u. We can derive a “dual” by eliminating c and ξ from the problem. We
take the derivative with respect to each in turn, and set it equal to zero:

∂L

∂c
= λKc − Ku = 0 =⇒ c =

u

λ
(7.5)

∂L

∂ξ
=

1

ℓ
ξ + u = 0 =⇒ ξ = −ℓu (7.6)

Unsurprisingly, we see that both c and ξ are simply expressible in terms of the dual
variables u. Substituting these expressions into the Lagrangian, we arrive at the re-
duced Lagrangian

LR(u) =
ℓ

2
uTu +

1

2λ
uT Ku − uT (K

u

λ
− y + ℓu)

= −
ℓ

2
uTu −

1

2λ
uT Ku + uTy.

We are now faced with a differentiable concave maximization problem in u, and we
can find the maximum by setting the derivative with respect to u equal to zero:

∇LR
u

= −ℓu −
1

λ
Ku + y = 0 =⇒ (K + λℓI)u = λy.

After we solve for u, we can recover c via Equation (7.5). It is trivial to check
that the resulting c satisfies (7.4). While the exercise of deriving the dual may seem
somewhat pointless, its value will become clear in later sections, where it will allow us
to make several interesting connections.

7.3 Previous Work

The square loss function is an obvious choice for regression. Tikhonov and Arsenin
[3] and Schönberg [11] used least-squares regularization to restore well-posedness to
ill-posed regression problems. In 1988, Bertero, Poggio and Torre introduced regular-
ization in computer vision, making use of Reproducing Kernel Hilbert Space ideas [12].
In 1989, Girosi and Poggio [13, 14] introduced classification and regression techniques
with the square loss in the field of supervised learning. They used pseudodifferential
operators as their stabilizers; these are essentially equivalent to using the norm in an
RKHS. In 1990, Wahba [4] considered square-loss regularization for regression problems
using the norm in a Reproducing Kernel Hilbert Space as a stabilizer.

More recently, Fung and Mangasarian considered Proximal Support Vector Ma-

chines [15]. This algorithm is essentially identical to RLSC in the case of the linear
kernel, although the derivation is very different: Fung and Mangasarian begin with

136 R. Rifkin, G. Yeo, T. Poggio

the SVM formulation (with an unregularized bias term b, as is standard for SVMs),
then modify the problem by penalizing the bias term and changing the inequalities to
equalities. They arrive at a system of linear equations that is identical to RLSC up to
sign changes, but they define the right-hand-side to be a vector of all 1’s, which some-
what complicates the intuition. In the nonlinear case, instead of penalizing cT Kc, they
penalize cTc directly, which leads to a substantially more complicated algorithm. For
linear RLSC where n << ℓ, they show how to use the Sherman-Morrison-Woodbury
to solve the problem rapidly (see Section 7.4).

Suykens also uses the square loss in his Least-Squares Support Vector Machines [16],
but allows the unregularized free bias term b to remain, leading to a slightly different
optimization problem.

We chose a new name for this old algorithm, Regularized Least-Squares Classifica-
tion, to emphasize both the key connection with regularization, and the fact RLSC is
not a standard Support Vector Machine in the sense that there is no sparsity in the c

vector. The connection between RLSC and SVM is that both are instances of Tikhonov
regularization, with different choices of the loss function V .

7.4 RLSC vs. SVM

Whereas training an SVM requires solving a convex quadratic program, training RLSC
requires only the solution of a single system of linear equations, which is conceptually
much simpler. However, this does not necessarily mean that training RLSC is faster. To
solve a general, nonlinear RLSC problem, we must first compute the K matrix, which
requires time O(ℓ2n) and space O(ℓ2).2 We must then solve the linear system, which
requires O(ℓ3) operations. The constants associated with the O notation in RLSC are
small and easily measured. The resource requirements of the SVM are not nearly so
amenable to simple analysis. In general, convex quadratic programming problems are
solvable in polynomial time [17], but the bounds are not tight enough to be practically
useful. Empirically, Joachims [18] has observed a scaling of approximately O(ℓ2.1),
although this ignores the dependence on the dimensionality n. Modern SVM algorithms
are not amenable to direct formal analysis, and depend on a complex tradeoff between
the number of data points, the number of Support Vectors, and the amount of memory
available. However, as a rule of thumb, for large nonlinear problems, we expect the
SVM to be much more tractable than the direct approach to the RLSC problem. In
particular, for large problems, we can often solve the SVM problem in less time than
it takes to compute every entry in K. Furthermore, if we do not have O(ℓ2) memory
available to store K, we cannot solve the RLSC problem at all via direct methods (we
can still solve it using conjugate gradient methods, recomputing the kernel matrix K

at every iteration, but this will be intractably slow for large problems). Even if we do
manage to train the RLSC system, using the resulting function at test time will be
much slower — for RLSC, we will have to compute all ℓ kernel products of training
points with a new test point, whereas for SVM, we will only have to compute the kernel
products with the support vectors, which are usually a small fraction of the training set.

2We make the assumption (satisfied by all frequently used kernel functions) that computing a single
kernel product takes O(n) operations.

Regularized Least-Squares Classification 137

In Section 7.6, we consider various approximations to the RLSC problem [19, 20, 21],
but whether these approximations allow us to recover a high quality solution using an
amount of time and memory equivalent to the SVM is an intriguing open question.

In the case of linear RLSC, the situation is very different. If we place our data in
the ℓ-by-n matrix A, (7.4) becomes

(AAT + λℓI)c = y.

If n << ℓ, we can solve the problem in O(ℓn2) operations using either the Sherman-
Morrison-Woodbury formula [15] or a product-form Cholesky factorization (suggested
by Fine and Scheinberg in the context of interior point methods for SVMs [22]); the
essential observation is that we can transform the rank ℓ problem into a rank n problem.
If n is small compared to ℓ, this leads to a huge savings in computational cost. If n is
large compared to ℓ, this technique is not helpful in general. However, in the important
subcase where the data points are sparse (have very few nonzero elements per vector),
for example in the case of a text categorization task, we can still solve the problem
very rapidly using the Conjugate Gradient algorithm [23]. In particular, an explicit
representation of (AAT + λℓI), which would require O(ℓ2) storage, is not required —
instead, we can form a matrix-vector product (AAT +λℓI)x in O(ℓn) operations, where
n is the average number of nonzero entries per data point by first computing i = (λℓI)x
and t = ATx, then using

(AAT + λℓI)x = At + i.

As an example of the speed advantages offered by this technique, we compared SVMs
and RLSCs trained using the Conjugate Gradient approach on the 20newsgroups data
set (described in Section 7.5 below) containing 15,935 data points. It took 10,045
seconds (on a Pentium IV running at 1.5 GhZ) to train 20 one-vs-all SVMs, and only
1,309 seconds to train the equivalent RLSC classifiers.3. At test time, both SVM and
RLSC yield a linear hyperplane, so testing times are equivalent.

It is also worth noting that the same techniques that can be used to train linear
RLSC systems very quickly can be used to train linear SVMs quickly as well. Using
an interior point approach to the quadratic optimization problem [22], we can solve
the SVM training problem as a sequence of linear systems of the form (K + dI)x = b,
where d changes with each iteration. Each system can be solved using the techniques
discussed above. In this case, the RLSC system will be faster than the SVM system by
a factor of the number of systems the SVM has to solve (as the RLSC approach only
needs to solve a single system); whether this approach to linear SVM will be faster
than the current approaches is an open question.

7.5 Empirical Performance of RLSC

Fung and Mangasarian [15] perform numerous experiments on benchmark datasets
from the UCI Machine Learning Repository [24], and conclude that RLSC performs as
well as SVMs. We consider two additional, large-scale examples. The first example is

3The SVMs were trained using the highly-optimized SvmFu system (http://fpn.mit.edu/SvmFu),
and kernel products were stored between different SVMs. The RLSC code was written in Matlab.

138 R. Rifkin, G. Yeo, T. Poggio

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.85

0.9

0.95

1

FP rate

T
P

 r
at

e

ROC curves: Full digit dataset

SVM, sigma 5, C 1
RLSC, sigma 5, lambda 1E−4

Figure 7.1: ROC curves for SVM and RLSC on the usps dataset.

800 250 100 30
SVM RLSC SVM RLSC SVM RLSC SVM RLSC

OVA 0.131 0.129 0.167 0.165 0.214 0.211 0.311 0.309
BCH 63 0.125 0.129 0.164 0.165 0.213 0.213 0.312 0.316

Table 7.1: A comparison of SVM and RLSC accuracy on the 20newsgroups multiclass

classification task. The top row indicates the number of documents/class used for training.

The left column indicates the multiclass classification scheme. Entries in the table are the

fraction of misclassified documents.

the US Postal Service handwritten database (referred to here as usps), consisting of
7,291 training and 2,007 testing points; the task we consider is to discriminate images
of the digit “4” from images of other digits. We first optimized the parameters (C and
σ) for the SVM, then optimized the λ parameter of RLSC using the same σ (σ = 5).
In Figure 7.1, we see that the full RLSC performed as well or better than the full SVM
across the entire range of the ROC curve.

The second example is a pair of multiclass text categorization tasks, referred to
as 20Newsgroups and Sector105. Rennie and Rifkin [25] used linear SVMs on these
datasets, using both a one-vs-all and a BCH coding scheme for combining the binary
classifiers into a multiclass classification system, obtaining the best published results
on both datasets. The datasets were split into nested training and testing sets 10 times;
details of the preprocessing scheme are available in [25]. Rifkin [21] used linear RLSC
with λℓ = 1 (solved using Conjugate Gradient) instead of SVMs; the experimental
setup is otherwise identical. Tables 7.1 and 7.2 give the average accuracy of the SVM
and RLSC schemes, for differing numbers of training documents per class. In all cases,
the accuracy of the RLSC scheme is essentially identical to that of the SVM scheme;
we note again that these results are better than all previously published results on
these datasets. Given that linear RLSC can be trained very fast, it seems that linear
RLSC shows great promise as a method of choice for very large-scale text categorization
problems.

Regularized Least-Squares Classification 139

52 20 10 3
SVM RLSC SVM RLSC SVM RLSC SVM RLSC

OVA 0.072 0.066 0.176 0.169 0.341 0.335 0.650 0.648
BCH 63 0.067 0.069 0.176 0.178 0.343 0.344 0.653 0.654

Table 7.2: A comparison of SVM and RLSC accuracy on the sector105 multiclass classifi-

cation task. The top row indicates the number of documents/class used for training. The left

column indicates the multiclass classification scheme. Entries in the table are the fraction of

misclassified documents.

7.6 Approximations to the RLSC Algorithm

Although the RLSC algorithm is conceptually simple and yields high accuracy, for
general nonlinear classification, it is often many orders of magnitude slower than an
SVM. For this reason, we explore here the idea of solving approximations to RLSC.
Hopefully, these approximations will yield a vast increase in speed with very little loss
in accuracy.

Several authors have suggested the use of low-rank approximations to the kernel
matrix in order to avoid explicit storage of the entire kernel matrix [19, 26, 20, 27, 22].
These techniques can be used in a variety of methods, including Regularized Least
Squares Classification, Gaussian Process regression and classification, and interior point
approaches to Support Vector Machines.

The approaches all rely on choosing a subset of m of the training points (or a subset
of size m, abusing notation slightly) representing those points exactly in the Hilbert
space, and representing the remaining points approximately as a linear combination of
the points in m. The methods differ in the approach to choosing the subset, and in
the matrix math used to represent the hypothesis. Both Smola and Schölkopf [19] and
Williams and Seeger [20] suggest the use of the approximate kernel matrix

K̃ = KℓmK−1
mmKmℓ.

The assumption is that m is small enough so that Kmm is invertible. If we use a method
that does not need the entries of K̃, but only needs to multiply vectors by K̃, we can
form the matrix-vector produce by taking advantage of the K̃’s representation as three
separate matrices:

K̃x = (KℓmK−1
mmKmℓ)x

= (Kℓm(K−1
mm(Kmℓx))).

This approximation is known as the Nyström approximation and is justified the-
oretically in [20]. If we approximate the kernel matrix using a subset of size m, we
can show that we are actually approximating the first m eigenfunctions of the integral
operator induced by the kernel (evaluated at all the data points). The quality of this
approximation will of course depend on the rate of decay of the eigenvalues of the
kernel matrix.

The two sets of authors differ in their suggestions as to how to choose the subset.
Williams and Seeger simply pick their subset randomly. Smola and Schölkopf suggest

140 R. Rifkin, G. Yeo, T. Poggio

a number of greedy approximation methods that iteratively reduce some measure of
the difference between K and K̃, such as the trace of K − K̃. They also suggest
approximations to the full greedy approach in order to speed up their method. However,
all their methods are likely to involve computing nearly all of the entries of K over the
course of their operation (for reasonable subset sizes), implying that forming a matrix
approximation in this manner will already be slower than training an SVM.

It is easy to show that (however m is selected) K̃ has the property that K̃mm = Kmm,

K̃mℓ = Kmℓ, and (trivially by symmetry) K̃ℓm = Kℓm. In other words, the approximated

kernel product K̃(x1,x2) for a pair of examples x1 and x2 will be exact if either of x1

or x2 are in m. It is also easy to show that K̃nn = KℓmK−1
mmKmℓ.

Inverting the matrix Kmm explicitly takes O(m3) steps formally, and in practice,
performing the inversion may be ill-conditioned, so this approach does not not seem to
be a good choice for real-world applications.

Fine and Scheinberg [22] instead suggest the use of an incomplete Cholesky factor-
ization. Noting that a positive semidefinite kernel matrix can always be represented
as K = RT R where R is an upper-triangular matrix, the incomplete Cholesky factor-
ization is formed by using only the first m rows of R. Fine and Scheinberg cleverly
choose the subset on the fly — at each iteration, they pivot a pair of rows of the matrix
so that the largest diagonal element becomes the next element in the subset. The total
running time of their approach is only O(mk2).4 In terms of the feature space, this
pivoting technique is equivalent to, at each step, adding to the subset the data point
which is most poorly represented by the current subset. Although the final matrix
contains only m nonzero rows, it is still upper-triangular, and we write

K̃ = RT
mRm.

However, there is a serious problem with this approach. Although Fine and Schein-
berg claim that their method “takes the full advantage of the greedy approach for for
the best reduction in the approximation bound tr(∆Q)”, this is not the case. To reduce
the approximation bound, we need to consider which element not in the basis will best
represent (the currently unrepresented portion of) all remaining non-basis elements.
This is what Smola and Schölkopf attempt in [19], at too large a computational cost.
The Fine and Scheinberg approach, in contrast, adds to the basis the element which
is most poorly represented by the current basis elements. If we believe that the trace
of K − K̃ is a useful measure of the quality of the approximation, this turns out to
be a very poor choice, at least for Gaussian kernels. In particular, on two different
datasets (see Section 7.6.2), we find that the portion of the trace accounted for by
the Fine and Scheinberg approximation is consistently smaller than the portion of the
trace accounted for by selecting the subset at random. This is not too hard to explain.
Because the Fine and Scheinberg approach adds the most poorly represented element
to the basis, under the Gaussian kernel, it will tend to add outliers — data points that
are far from any other data point. The trace would be reduced much more by adding
elements which are not as far away, but which are themselves close to a large number

4We have not formally defined “operations” (is a multiplication more expensive than an addition
or a memory access?), but it is clear that the constant involved in this approach is small compared to
the methods suggested in [19].

Regularized Least-Squares Classification 141

of additional points. Speaking informally, we want to add the points which are centers
of clusters to the basis, not point which are outliers.

We now consider the use of a low-rank approximation, obtained by any of the above
means, in RLSC.

7.6.1 Low-rank approximations for RLSC

The most obvious approach (and indeed, the one suggested in [20] in the context
of Gaussian process classification and [22] in the context of Support Vector Machine

classification) is to simply use the matrix K̃ in place of the original K, resulting in the
system of linear equations:

(K̃ + λℓI) = y.

These equations can be solved using the conjugate gradient method, taking ad-
vantage of the factorization of K̃ to avoid having to store an ℓ-by-ℓ matrix. From a
machine learning standpoint, this approach consists of taking a subset of the points,
estimating the kernel values at the remaining points, then treating the estimate as
correct and solving the original problem over all the data points. In practice, we found
that this worked quite poorly, because the matrix eigenvalues do not decay sufficiently
quickly (see Section 7.6.2).

Instead, we consider the following modified algorithm, alluded to (among other
places) in [19]. We minimize the empirical risk over all points, but allow the ci to
be nonzero only at a specific subset of the points (identical to the points used in the
low-rank kernel approximation). This leads to the following modified problem:

min F (cm)

= mincm∈Rm

1

ℓ
(y − Kℓmcm)T (y − Kℓmcm) + λcm

T Kcm

= mincm∈Rm

1

2ℓ

(
yTy − 2yT Kℓmcm + cT KmℓKℓmc

)
+

λ

2
cm

T Kcm.

We take the derivative with respect to cm and set it equal to zero:

∇Fcm
=

1

ℓ
(Kmℓy + KmℓKℓmcm) + λKmmcm = 0

=⇒ (KmℓKℓm + Kmmλℓ)cm = Kmℓy.

We see that when we only allow a subset of size m points to have nonzero coefficients
in the expansion, we can solve a m by m system of equations rather than an ℓ-by-ℓ
system. As with the standard full RLSC, we were able to find the system of equations
that defines the optimal solution by setting the derivative equal to zero. Again, suppose
for the sake of argument we decide to derive a “dual” problem. We introduce a vector
of dual variables u — it is important to note that this vector is of length ℓ, not m. We
form the Lagrangian:

L(cm, ξ,u) =
1

2ℓ
ξT ξ +

λ

2
cm

T Kmmcm − uT (Kℓmcm − y − ξ).

142 R. Rifkin, G. Yeo, T. Poggio

We take the derivative with respect to ξ:

∂L

∂ξ
=

1

ℓ
ξ + u = 0

=⇒ ξ = −ℓu

We take the derivative with respect to cm:

∂L

∂cm

= λKmmcm − Kmℓu = 0

=⇒ cm =
1

λ
K−1

mmKmℓu.

Substituting these equations into L, we reduce the Lagrangian to:

L(u)

=
ℓ

2
uTu +

1

2λ
uTKℓmK−1

mmKmℓu −
1

λ
uTKℓmK−1

mmKmℓu + uTy − ℓuTu

=
ℓ

2
uTu +

1

2λ
uTK̃u −

1

λ
uTK̃u + uTy − ℓuTu

= −
ℓ

2
uTu −

1

2λ
uTK̃u + uTy.

Setting the derivative to zero yields

∂L

∂u
= −ℓu −

1

λ
K̃u + y = 0

=⇒ (K̃ + λℓI)u = λy

If we solve this system for u

λ
, we are solving exactly the same system of equations as

if we had used the Nyström approximation at the subset m directly. However, in order
to find the optimal solution, we need to recover the vector cm using the equation

cm =
1

λ
K−1

mmKmℓu. (7.7)

To summarize, we suggest that instead of using the matrix K̃ directly in place of
K, we consider a modified problem in which we require our function to be expressed in
terms of the points in the subset m. This leads to an algorithm that doesn’t directly
involve K̃, but uses only the component matrices Kmm, Kℓm and Kmℓ. Although it is
not strictly necessary, we can take the Lagrangian dual of this problem, at which point
we solve a system that is identical to the original, full RLSC problem with K replaced
with K̃. However, we do not use the resulting u vector directly, instead recovering the
cm by means of (7.7).

7.6.2 Nonlinear RLSC application: image classification

To test the ideas discussed above, we compare various approaches to nonlinear RLSC
on two different datasets. The first dataset is the US Postal Service handwritten

Regularized Least-Squares Classification 143

database, used in [20] and communicated to us by the authors, and referred to here
as usps. This dataset consists of 7,291 training and 2,007 testing points; the task we
consider is to discriminate images of the digit “4” from images of other digits. The
training set contains 6,639 negative examples and 652 positive examples. The testing
set contains 1,807 negative examples and 200 positive example. The second data set
is a face recognition data set that has been used numerous times at the Center for
Biological and Computational Learning at MIT [28, 29], referred to here as faces.
The training set contains 2,429 faces and 4,548 non-faces. The testing set contains 472
faces and 23,573 non-faces.

Although RLSC on the entire dataset will produce results essentially equivalent to
those of the SVM [21], they will be substantially slower. We therefore turn to the
question of whether an approximation to RLSC results can produce results as good as
the full RLSC algorithm. We consider three different approximation methods. The
first method, which we call subset, involves merely selecting (at random) a subset of
the points, and solving a reduced RLSC problem on only these points. The second
method, which we call rectangle, is the primary algorithm discussed in Section 7.6.1:
we choose a subset of the points, allow only those points to have nonzero coefficients in
the function expansion, but minimize the loss over all points simultaneously. The third
method is the Nyström method, also discussed briefly in Section 7.6.1 and presented
more extensively in [20] (and in a slightly different context in [22]): in this method
we choose a subset of the points, use those points to approximate the entire kernel
matrix, and then solve the full problem using this approximate kernel matrix. In all
experiments, we try four different subset sizes (1,024, 512, 256, and 128 for the usps

dataset, and 1,000, 500, 250 and 125 for the faces dataset), and the results presented
are the average of ten independent runs.

The results for the usps data set are given in Figure 7.2. We see that rectangle

performs best, followed by subset, followed by nystrom. We suggest in passing that the
extremely good results reported for nystrom in [20] may be a consequence of looking
only at the error rate (no ROC curves are provided) for a problem with a highly
skewed distribution (1,807 negative examples, 200 positive examples). For rectangle
performance is very good at both the 1,024 and 512 sizes, but degrades noticeably for
256 samples. The results for the faces dataset, shown in Figure 7.3, paint a very
similar picture. Note that the overall accuracy rates are much lower for this dataset,
which contains many difficult test examples.

In all the experiments described so far, the subset of points was selected at ran-
dom. Fine and Scheinberg [22] suggests selecting the points iteratively using an optimal
greedy heuristic: at each point, the example is selected which will minimize the trace
of the difference between the approximate matrix and the true matrix. Because the
method simply amounts to running an incomplete Cholesky factorization for some
number of steps (with pivoting at each step), we call this method ic. As mentioned

earlier, if we believe that smaller values of tr(K − K̃) are indicative of a better ap-
proximation, this method appears to produce a worse approximation than choosing
the subset at random (see Figure 7.4 and Figure 7.5). As pointed out by Scheinberg in

personal communication, a smaller value of tr(K − K̃) is not necessarily indicative of
a better matrix for learning, so we conducted experiments comparing ic to choosing
a subset of the data at random randomly. Figure 7.6 shows the results for the usps

144 R. Rifkin, G. Yeo, T. Poggio

0 0.1 0.2 0.3 0.4 0.5
0.85

0.9

0.95

1
subset−−lambdaEminus4

FP rate

T
P

 r
at

e
1024
512
256
128
fullsvm

0 0.1 0.2 0.3 0.4 0.5
0.85

0.9

0.95

1
rect−−lambdaEminus4

FP rate

T
P

 r
at

e

1024
512
256
128
fullsvm

0 0.1 0.2 0.3 0.4 0.5
0.85

0.9

0.95

1
nystrom−−lambdaEminus4

FP rate

T
P

 r
at

e

1024
512
256
128
fullsvm

Figure 7.2: A comparison of the subset, rectangle and nystrom approximations to RLSC

on the usps dataset. Both SVM and RLSC used σ = 5.

Regularized Least-Squares Classification 145

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1
subset−−lambdaEminus4

FP rate

T
P

 r
at

e

1000
500
250
125
fullsvm
fullrlsc

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1
rect−−lambdaEminus4

FP rate

T
P

 r
at

e

1000
500
250
125
fullsvm
fullrlsc

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1
nystrom−−lambdaEminus4

FP rate

T
P

 r
at

e

1000
500
250
125
fullsvm
fullrlsc

Figure 7.3: A comparison of the subset, rectangle and nystrom approximations to RLSC

on the faces dataset. SVM used σ = 5, RLSC used σ = 2.

146 R. Rifkin, G. Yeo, T. Poggio

100 200 300 400 500 600 700 800 900 1000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Using increasing number of samples (1024 total)

F
ra

ct
io

n
tr

ac
e(

ap
pr

ox
im

at
ed

 K
)

/ t
ra

ce
(K

)

Digit 4 dataset (gaussian kernel, sigma = 5) using 1024 out of 7291 points

using IC selected points
using random points

Figure 7.4: A comparison between the portion of the trace of K accounted for by using a

subset of the points chosen using ic and a random subset, for the usps dataset.

data, and Figure 7.7 shows the results for the faces data. In all these experiments,
we compare the average performance of the ten classifiers trained on a random subset
to the performance of a single classifier trained on the subset of the same size obtained
using the ic method. In these experiments, it does not seem that selecting the “opti-
mal” subset using the ic method improves performance on learning problems. In the
interests of computational efficiency, we may be better off simply choosing a random
subset of the data.

The experiments contained in this section are somewhat preliminary. In particular,
although using subsets of size 128 is faster than running the SVM, using subsets of size
1024 are already slower. Further experiments in which both techniques are optimized
more thoroughly are necessary to fully answer the question of whether these approxi-
mations represent a viable approach to solving large-scale optimization problems.

7.7 Leave-one-out Bounds for RLSC

Leave-one-out bounds allow us to estimate the generalization error of a learning system
when we do not have access to an independent test set. In this section, we define fS to
be the function obtained when the entire data set is used, and fSi to be the function
obtained when the ith data point is removed and the remaining ℓ− 1 points are used.
We use G to denote (K + λℓI)−1. Classical results (for example see [30]) yield the
following exact computation of the leave-one-out value:

yi − fSi(xi) =
yi − fS(xi)

1 − Gii

.

Regularized Least-Squares Classification 147

0 100 200 300 400 500 600 700 800 900 1000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Face dataset (gaussian kernel, sigma=5) using 1000 out of 6953 points

Using increasing number of samples (1000 total)

F
ra

ct
io

n
tr

ac
e(

ap
pr

ox
im

at
ed

 K
)/

tr
ac

e(
K

)

using IC selected points
using random points

Figure 7.5: A comparison between the portion of the trace of K accounted for by using a

subset of the points chosen using ic and a random subset, for the faces dataset.

0 0.1 0.2 0.3 0.4 0.5
0.85

0.9

0.95

1
rect−−lambdaEminus4

FP rate

T
P

 r
at

e

1024
IC1024

0 0.1 0.2 0.3 0.4 0.5
0.85

0.9

0.95

1
rect−−lambdaEminus4

FP rate

T
P

 r
at

e

512
IC512

0 0.1 0.2 0.3 0.4 0.5
0.85

0.9

0.95

1
rect−−lambdaEminus4

FP rate

T
P

 r
at

e

256
IC256

0 0.1 0.2 0.3 0.4 0.5
0.85

0.9

0.95

1
rect−−lambdaEminus4

FP rate

T
P

 r
at

e

128
IC128

Figure 7.6: A comparison between random subset selection and the ic method, classifying

the usps dataset using the rectangle method.

148 R. Rifkin, G. Yeo, T. Poggio

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
rect−−lambdaEminus4

FP rate
T

P
 r

at
e

1000
IC1000

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
rect−−lambdaEminus4

FP rate

T
P

 r
at

e

500
IC500

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
rect−−lambdaEminus4

FP rate

T
P

 r
at

e

250
IC250

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
rect−−lambdaEminus4

FP rate

T
P

 r
at

e

125
IC125

Figure 7.7: A comparison between random subset selection and the ic method, classifying

the faces dataset using the rectangle method.

Unfortunately, using this equation requires access to the inverse matrix G, which is
often computationally intractable and numerically unstable.

An alternative approach, introduced by Craven and Wahba [31], is known as the
generalized approximate cross-validation, or GACV for short. Instead of actually using
the entries of the inverse matrix G directly, an approximation to the leave-one-out
value is made using the trace of G:

yi − fSi(xi) ≈
yi − fS(xi)

1 − 1
ℓ
tr(G)

This approach, while being only an approximation rather than an exact calculation,
has an important advantage. The trace of a matrix is the sum of its eigenvalues. If
the eigenvalues of K are known, the eigenvalues of G can be computed easily for any
value of λ, and we can then easily select the value of λ which minimizes the leave-one-
out bound. Unfortunately, computing all the eigenvalues of K is in general much too
expensive, so again, this technique is not practical for large problems.

Jaakkola and Haussler introduced an interesting class of simple leave-one-bounds
[32] for kernel classifiers. In words, their bound says that if a given training point x can
be classified correctly by fS without using the contribution of x to fS, then x cannot
be a leave-one-out error — fSi(xi) ≥ 0. Although the Jaakkola and Haussler bound
does not apply directly to RLSC (because the ci are not sign-constrained), Rifkin [21]
showed that their bound is valid for RLSC via a slightly more involved proof, and that
the number of leave-one-out errors is bounded by

|xi : yi

∑

j 6=i

cjK(xi,xj) ≤ 0|

Regularized Least-Squares Classification 149

This bound can be computed directly given the ci; no retraining is required. The
same bound holds for SVMs (without an unregularized b term), via the Jaakkola and
Haussler proof. However, there is a simple geometric condition in RLSC that allows
us to provide a more elegant bound.

Using (7.5) and (7.6), we see that

ξi = −ℓλci.

Combining this with the definition of the ξi,

ξi = f(xi) − yi,

we find that

ci =
yi − f(xi)

ℓλ
.

Using this, we can eliminate ci from the bound, arriving at

|xi : yi

(
f(xi) −

(
yi − f(xi)

ℓλ

)
K(xi,xi)

)
≤ 0|

=⇒ |xi : yi

(
(1 +

K(xi,xi)

ℓλ
)f(xi) −

yi

ℓλ
K(xi,xi)

)
≤ 0|.

Supposing yi = 1, for some i, the condition reduces to

(1 +
K(xi,xi)

ℓλ
)f(xi) ≤

1

ℓλ
K(xi,xi)

=⇒ f(xi) ≤
K(xi,xi)

ℓλ + K(xi,xi)
.

Reasoning similarly for the case where yi = −1, we find that we can bound the number
of leave-one-out errors for RLSC via

|xi : yif(xi) ≤
K(xi,xi)

K(xi,xi) + ℓλ
|.

In this form, there is a nice connection to the recent algorithmic stability work of
Bousquet and Elisseef [8], where it is shown that Tikhonov regularization algorithms
have “stability” of O(1

ℓλ
) — very loosely, that when a single data point is removed from

the training set, the change in the function obtained is O(1
λℓ

). For RLSC, we are able
to exploit the geometry of the problem to obtain a leave-one-out bound that directly
mirrors the stability theory results.

150 R. Rifkin, G. Yeo, T. Poggio

Bibliography

[1] T. Evgeniou, M. Pontil and T. Poggio, Regularization networks and support vector
machines, Advances in Computational Mathematics 13 (2000) 1–50.

[2] F. Cucker and S. Smale, On the mathematical foundations of learning, Bulletin of the

American Mathematical Society 39 (2002) 1–49.

[3] A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-posed problems, W. H. Winston,
Washington D.C. (1977).

[4] G. Wahba, Spline Models for Observational Data, volume 59 of CBMS-NSF Regional

Conference Series in Applied Mathematics, Society for Industrial & Applied Mathemat-
ics (1990).

[5] N. Aronszajn, Theory of reproducing kernels, Transactions of the American Mathemat-

ical Society 68 (1950) 337–404.

[6] G. Wahba, Support vector machines, reproducing kernel hilbert spaces and the random-
ized gacv, Technical Report 984rr, University of Wisconsin, Department of Statistics
(1998).

[7] V.N. Vapnik, Statistical Learning Theory, John Wiley & Sons (1998).

[8] O. Bousquet and André Elisseeff, Stability and generalization, Journal of Machine

Learning Research 2 (2002) 499–526.

[9] F. Girosi, An equivalence between sparse approximation and support vector machines,
Neural Computation 10(6) (1998) 1455–1480.

[10] B. Schölkopf, R. Herbrich and Alex J. Smola, A generalized representer theorem. In
Proceedings of the 14th Annual Conference on Computational Learning Theory (2001)
416–426.

[11] I. Schönberg, Spline functions and the problem of graduation, Proceedings of the Na-

tional Academy of Science (1964) 947–950.

[12] M. Bertero, T. Poggio and V. Torre, Ill-posed problems in early vision, Proceedings of

the IEEE 76 (1988) 869–889.

[13] T. Poggio and F. Girosi, A theory of networks for approximation and learning, Technical
Report A.I. Memo No. 1140, C.B.C.L Paper No. 31, Massachusetts Institute of Tech-
nology, Artificial Intelligence Laboratory and Center for Biological and Computational
Learning, Department of Brain and Cognitive Sciences, July (1989).

151

152 R. Rifkin, G. Yeo, T. Poggio

[14] T. Poggio and F. Girosi, Networks for approximation and learning, Proceedings of the

IEEE 78(9) (1990) 1481–1497.

[15] G. Fung and O.L. Mangasarian, Proximal support vector machine classifiers, Technical
report, Data Mining Institute (2001).

[16] J.A.K. Suykens and J. Vandewalle, Least squares support vector machine classifiers,
Neural Processing Letters 9(3) (1999) 293–300.

[17] Y. Nesterov and A. Nemirovskii, Interior Point Polynomial Algorithms in Convex Pro-

gramming, volume 13 of Studies In Applied Mathematics. SIAM (1994).

[18] T. Joachims, Making large-scale svm learning practical, Technical Report LS VIII-
Report, Universität Dortmund (1998).

[19] A.J. Smola and B. Schölkopf, Sparse greedy matrix approximation for machine learning,
In Proceedings of the International Conference on Machine Learning (2000).

[20] C.K.I. Williams and M. Seeger, Using the Nyström method to speed up kernel machines,
In Neural Information Processing Systems (2000).

[21] R.M. Rifkin, Everything Old Is New Again: A Fresh Look at Historical Approaches to

Machine Learning, PhD thesis, Massachusetts Institute of Technology (2002).

[22] S. Fine and K. Scheinberg, Efficient application of interior point methods for quadratic
problems arising in support vector machines using low-rank kernel representation, Sub-

mitted to Mathematical Programming (2001).

[23] J.R. Shewchuk, An introduction to the conjugate gradient method without the agonizing
pain, http://www-2.cs.cmu.edu/∼jrs/jrspapers.html (1994).

[24] C.J. Merz and P.M. Murphy, Uci repository of machine learning databases,
http://www.ics.uci.edu/∼mlearn/MLRepository.html (1998).

[25] J. Rennie and R. Rifkin, Improving multiclass classification with the support vector
machine. Technical Report A.I. Memo 2001-026, C.B.C.L. Memo 210, MIT Artificial
Intelligence Laboratory, Center for Biological and Computational Learning (2001).

[26] Y.-J. Lee and O. Mangasarian, Rsvm: Reduced support vector machines, In SIAM

International Conference on Data Mining (2001).

[27] T. Van Gestel, J. Suykens, B. De Moor, and J. Vandewalle. Bayesian inference for ls-
svms on large data sets using the Nyström method. In International Joint Conference

on Neural Networks (2002).

[28] B. Heisele, T. Poggio, and M. Pontil, Face detection in still gray images, Technical
Report A.I. Memo No. 2001-010, C.B.C.L. Memo No. 197, MIT Center for Biological
and Computational Learning (2000).

[29] M. Alvira and R. Rifkin, An empirical comparison of snow and svms for face detection,
Technical Report A. I. Memo No. 2001-004, C.B.C.L. Memo No. 193, MIT Center for
Biological and Computational Learning (2001).

Regularized Least-Squares Classification 153

[30] P.J. Green and B.W. Silverman, Nonparametric Regression and Generalized Linear

Models, Number 58 in Monographs on Statistics and Applied Probability. Chapman &
Hall (1994).

[31] P. Craven and G. Wahba, Smoothing noisy data with spline functions, Numerical

Mathematics 31 (1966) 377–390.

[32] T. Jaakkola and D. Haussler, Probabilistic kernel regression models, In Advances in

Neural Information Processing Systems 11 (1998).

154 R. Rifkin, G. Yeo, T. Poggio

