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High-throughput sequencing has rapidly gained popularity for
transcriptome analysis in mammalian cells because of its ability to
generate digital and quantitative information on annotated genes
and to detect transcripts and mRNA isoforms. Here, we described
a double-random priming method for deep sequencing to profile
double poly(A)-selected RNA from LNCaP cells before and after
androgen stimulation. From �20 million sequence tags, we uncov-
ered 71% of annotated genes and identified hormone-regulated
gene expression events that are highly correlated with quantita-
tive real time PCR measurement. A fraction of the sequence tags
were mapped to constitutive and alternative splicing events to
detect known and new mRNA isoforms expressed in the cell.
Finally, curve fitting was used to estimate the number of tags
necessary to reach a ‘‘saturating’’ discovery rate among individual
applications. This study provides a general guide for analysis of
gene expression and alternative splicing by deep sequencing.

alternative splicing � androgen-regulated gene expression in prostate
cancer cells � curve regression � high-throughput sequencing

Microarray-based approaches, especially unbiased tiling arrays,
suggest that up to 80% of the genome may be transcribed to

produce a huge number of uncharacterized transcripts relative to
current gene annotation (1–4). In contrast, recent transcriptome
analysis by deep sequencing indicates that the vast majority of
expressed transcripts in mammalian tissues and cell lines are
confined to annotated genes and exons (5, 6). Although microarray-
based approaches suffer from a great degree of uncertainty in
relating detected hybridization signals to defined transcripts, se-
quencing-based approaches tend to be overwhelmed by abundant
transcripts in the cell. Construction of ‘‘normalized’’ libraries for
deep sequencing might facilitate the discovery of low abundance
transcripts, many of which may act as noncoding, regulatory RNA
in mammalian cells.

An advantage of transcriptome analysis by deep sequencing is the
ability to detect structural variation of individual transcripts. It is
well known that different transcripts from the same genes may be
generated by differential promoter usage, heterogeneous transcrip-
tional start sites and alternative 3� end formation (2). A recent Pol
II ChIP-chip study indicates that protein-coding genes may have an
average of 3 to 5 promoters in both the mouse and human genomes
(7). Further adding to the diversity in the transcriptome is alter-
native RNA processing of most protein-coding genes as a conse-
quence of alternative 5� and 3� splice site choices, exon inclusion/
skipping, intron retention, and combinatorial use of alternative
exons (8). It is estimated that up to 74% of human genes undergo
alternative splicing, which is believed to contribute to the complex-
ity of the proteome in mammalian cells (9).

It is striking to note that individual laboratories now have the capacity
to generate sequenced tags that are on the same order of sequenced
mRNA/ESTs in publicly available databases (�160K mouse mRNAs
from RIKEN (10) and �30M ESTs in dbEST) accumulated over
decades. However, despite recent reports on transcriptome analysis by

deep sequencing (5, 6, 11), a range of practical issues remain to be
addressed: How many annotated genes are detectable in a single cell
type, what is the number of tags that is necessary for quantitative
analysis of differentially regulated genes under different experimental
conditions, to what extent can existing mRNA isoforms be detected,
and how can one quantify alternative splicing by using a single or
combination of existing technologies?

In this report, we attempted to address these issues on an
androgen-sensitive prostate cancer cell model. Using a double-
random priming approach capable of generating strand-specific
information, we sequenced poly(A)� RNA from mock-treated or
androgen-stimulated LNCaP cells on the Illumina 1G Genome
Analyzer. Analysis of �10 million sequence tags generated from
both control and hormone-treated cells suggests that this tag
density is sufficient for quantitative analysis of gene expression. We
were also able to detect a large fraction of tags corresponding to
annotated alternative exons, with a subset of the tags matching
known and detecting new splice junctions; however, the current tag
density is insufficient to deduce quantitative differences among
most detected mRNA isoforms. Based on this information, a
computational model based on curve fitting was used to estimate
the tag density needed for optimal detection of regulated gene
expression and alternative splicing.

Results and Discussion
Transcriptome Analysis by Double-Random Priming. Typical RNAseq
procedures used by several published studies involve random priming to
convert poly(A)� mRNA to double-stranded cDNA followed by linker
ligation (5, 6, 12, 13). To simplify library construction for deep sequenc-
ing, we devised a procedure based on double-random priming and solid
phase selection (Fig. 1). In this procedure, the first random primer
(octamer linked to the sequencing primer P1) was used to prime double
poly(A)-selected RNA from LNCaP cells. A variation of this is to use
oligo(dT) linked to the sequencing primer for analysis of total RNA
without poly(A) selection. The first primer also carries a biotin moiety
at the 5� end, which allows transfer of extended cDNA to streptavidin
beads. The second random primer linked to the other sequencing
primer (P2) was next used to prime the cDNA on the streptavidin
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beads. After extensive washes, potential P2 dimers were eliminated and
the second random primed products were released from the beads by
heat, leaving behind unused P1 primer, P1-extended cDNA, and

potential P1 dimers. The released products are PCR-amplified, gel
purified to enrich for amplicons in the size range of 100–300 nt,
quantified, and subjected to sequencing from the P1 primer on the
Illumina/Solexa flowcell.

This procedure has a number of useful features. First, it provides
strand-specific information. Second, sequencing a short region right
after the first random priming reaction avoids cDNA artifacts
resulting from extension by the hairpins formed after the first strand
synthesis (14), which may account for artifactual ‘‘antisense tran-
scripts’’ seen in previous large-scale mRNA sequencing and tiling
analysis (1, 15). Third, the built-in random primer region retains the
molecular memory for originally primed products allowing com-
putational elimination of sequenced tags amplified by PCR, be-
cause all PCR products from the same initial amplicon will have
identical sequences in the randomized region. This strategy permits
the use of PCR amplification without distorting the representation
of the transcriptome, a feature critical for quantitative analysis on
a small population of cells.

Global Statistics of Gene Expression. We obtained �10 million 36-nt
sequence tags from mock- and androgen-treated LNCaP cells,
respectively. To use the longest possible read for mapping the tags
to specific transcripts and to splice junctions, we only removed the
first nucleotide from the random primer region because it contrib-
utes the least to the random priming reaction (Fig. S1). By allowing
2 base mismatches, we were able to uniquely align �21% of the tags
to the human genome (Fig. 2A). This is lower than previously
published results (5, 6, 11), but is not due to contamination in our
purified poly(A) RNA by transcripts from repeat regions, including
rRNA, in the human genome, which together constitute �1% of
total sequenced tags (Fig. 2A). An analysis of nucleotide frequen-
cies of mapped tags suggests a degree of bias during random
priming for relatively high GC-content, especially at positions �5 to
�7 (Fig. S1A). The uniquely mapped tag set also allowed us to
determine the sequencing error at each position, indicating a high
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Fig. 1. The double random priming method for deep sequencing. The first
biotinylated random primer consists of the sequencing primer P1 at the 5� end
and a random octamer at the 3� end. Products of the first random priming
reaction were selected on streptavidin beads (blue eclipse) followed by the
second random priming reaction on the solid phase with a random octamer
carrying the sequencing primer P2. After extensive washes to remove free
primers and primer dimmers, the second random priming products were
released from beads by heat, which were then PCR-amplified, gel-purified,
and subjected to sequencing from the P1 primer.
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Fig. 2. Global mapping of se-
quence tags. (A) Summary of
genomic mapping results, allowing
2 mismatches in 35 nt. For compar-
ison, additional mapping results
that include tags that hit up to 5
positions in the genome or with
tags after removal of the first 4 nt
and last 3 nt are shown in Table S1.
Sequence tags mapped to splice
junctions include known junctions
and junctions determined in this
study. (B) Transcription from top
(�) and bottom (�) strands of hu-
man chromosome X. The data
showed high reproducibility with
high (�0.7) Pearson correlation co-
efficients within the same strands
and low (�0.04) correlation be-
tween different strands (see Table
S2). (C) Genomic distribution of se-
quence tags in exons, introns, pro-
moters (3 kb from transcription
start sites), and intergenic regions.
(D) Sense and antisense transcripts.
Sequence tags corresponding to
both sense and antisense tran-
scripts were color-coded and dis-
played on a composite mRNA map
with the x axis showing the tag po-
sition (% of spliced mRNA region)
and the y axis showing the tag den-
sity (tags per megabase).
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error rate at both the random priming region and toward the end
of the sequenced tags (Fig. S1B). By including tags that were mapped
up to 5 positions in the human genome and/or removing the first 4 nt
and last 3 nt, we were able to progressively increase the number of
‘‘mappable’’ tags (Table S1). We nevertheless elected to use the longest
tags with most stringent alignment for downstream analyses.

Because of the strand specificity of our method, we were able to
unambiguously assign tags to either the top (�) or the bottom (�)
strand of the human genome according to the genome orientation
(Fig. 2B). The tag distribution is highly reproducible as evidenced
by plotting the tags along human chromosomes under two biolog-
ical conditions (Fig. 2B). Furthermore, high Pearson correlation
coefficients within the same strand under different treatment
conditions and low Pearson correlation coefficients between dif-
ferent strands under the same conditions indicate a high degree of
data reproducibility and a minimal impact of global gene expression
by the hormone treatment (Table S2).

The genomic distribution of the mapped tags according to
current gene annotation shows that most tags are confined to
protein coding genes, although we detected a large number of tags
in intronic regions (Fig. 2C). This profile is distinct from other
published studies based on the Solexa platform, but comparable to
those observed by 454 sequencing (5, 6, 16). The exact reason(s) for
this discrepancy is presently unclear. We also detect a sizable
fraction of tags in intergenic regions, which correspond to poten-
tially new coding and noncoding transcripts but little in gene
promoters, as expected (Fig. 2C).

Consistent with the observations made by large-scale full-length
cDNA sequencing (10) and tiling array studies (1), we also detected
a sizable number of antisense transcripts and aligned both sense and
antisense transcripts on the normalized gene model (Fig. 2D). For
sense transcripts, the tag density is low at the 5� end, likely due to
heterogeneous transcription start and to size selection of amplicons
for sequencing, which removes small amplicons (�100 nt) from the
5� end. Interestingly, the tag density for sense transcripts declines
toward the 3� end. Although the exact reason for this is presently
unclear, such steady decline is distinct from that at the 5� end,
indicating that the pattern cannot simply be explained by size-
selection or alternative 3� end formation. In contrast, most tags
aligned to antisense transcripts were detected at the 3� end of
protein-coding genes (Fig. 2D). This profile is consistent with the
binding of many common transcription factors, including Pol II, at
the 3� end of many genes (17). Because antisense transcripts are
thought to provide some regulatory function to sense transcription,
their termination toward the 5� end may result from competition
with sense transcription as suggested by the polymerase collision
model (18). It is yet to be determined whether any detected
sense/antisense pairs are subjected to androgen regulation.

Quantitative Detection of Androgen-Responsive Genes. The high
density of tags mapped onto annotated genes provides both qual-
itative and quantitative measures of transcription in response to the
hormonal signal. We detected the expression of 71% annotated
genes in LNCaP cells (Table 1). To determine hormone-regulated
genes in this widely used prostate cancer cellular model, we
enumerated the number of tags mapped to exons in individual
transcripts before and after DHT stimulation. To identify hormone-
regulated genes, we compared the number of tags mapped to
specific transcripts to the total number of tags mapped to all other
transcripts, using �2 statistics (Fig. 3A). At the cutoff of P � 0.01,
we identified 359 genes (red dots in Fig. 3A) that were differentially
up- or down-regulated by hormone treatment (Table S3). Real time
RT-PCR validated a sizable set of androgen-responsive genes,
demonstrating a high concordance (R2 � 0.92) between the digital
information generated by deep sequencing and the quantitative
measurement by qPCR (Fig. 3B and Table S4).

Gene Ontology (GO) analysis indicated that the hormone up-
regulated genes identified in the current study were enriched in Ta
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categories involved in cellular signaling and nuclear functions
(Table S5). Similarly to ref. 19, we compared our dataset with those
derived from published microarray-based studies, we found that
25% of hormone responsive genes overlapped with at least one
published profile (Fig. 3C). Although all pairwise comparisons of
our differentially regulated genes showed statistically significant
overlap (P � 0.01) with sets published in refs. 20–24, the degree of
overlap varies considerably (Table S6), which likely results from a
combination of different statistical cutoffs, different treatment condi-
tions, variable biological response of the same cell type cultured in
individual laboratories, and other experimental differences.

To estimate the number of tags required for detecting specific
genomic features, in this case, the total number of annotated genes
and differentially expressed genes, we developed an approach based
on power or exponential curve fitting to extrapolate the optimal tag
density for detection of individual genomic features (see Materials
and Methods). Our calculations, which take into account the
number of features observed at increasing tag densities, suggest that
�1.2 million and �5.5 million mappable tags would be needed to
reach a level where further increase in tag density will not yield
�5% additional discovery of annotated genes and DHT-responsive
genes, respectively. These numbers increase to �3.3 million and
14.9 million tags for annotated genes and DHT-responsive genes,
respectively, if the threshold is set to 1% (Fig. 3D and Table 1).
Although regulated gene expression induced by external signals varies
among different cell types, our method provides an estimate for the tag
density needed for both qualitative (expressed transcripts) and quan-
titative (differentiallyexpressed transcripts)analysesofgeneexpression.

Strategies to Identify Alternative Exons and Splice Junctions. It is
striking that a large fraction (�70%) of sequence tags could not be
mapped at our stringent criteria to the reference human genome,
a certain percentage of which likely corresponds to splice junctions
created by constitutive and alternative mRNA splicing. Although
several published deep-sequencing studies have documented the
ability of using short sequence reads to identity splice junctions (5,
6, 12), it is unclear to what extent the current sequencing technol-
ogies are able to uncover mRNA isoforms and whether it is practical

to comprehensively profile alternative splicing by deep sequencing.
We attempted to address these questions with the data generated
from LNCaP cells, using two complementary approaches.

Our first approach was to construct an exon-body database
(EBDB) by identifying all exons that are flanked by canonical splice
signals (GT-AG, AT-AC, GC-AG), which were further classified
into constitutive exons (CE), alternative exons that are supported
by the existing mRNA/EST information (AE), and alternative
conserved exons (ACE) identified by the ACEscan algorithm (25).
Mapping of the sequence tags to individual exons revealed 19 to
29% of exons in each class were detectable at current tag density
(Table 1). Curve-fitting analysis suggests that our current density is
approaching the predicted threshold such that no �1% additional
discovery can be achieved with further increase in tag density (Fig.
4A and Table 1). This is likely related to variation in transcript
abundance, because low abundance transcripts may not have suf-
ficient tag densities to detect all their individual exons.

Complementary to the exon body approach, we also created a
splice junction database for constitutive and alternative splicing
events supported by the existing mRNA/ESTs and alternative
conserved splicing events identified by ACEscan (25). This allowed
us to assign a fraction of previously unaligned tags to known splice
junctions. To ensure accuracy, we conservatively required that at
least two independent tags mapped to the same junction with at
least 4 nt across the exon-exon junction. The rationale for requiring
4 nt overlap was based on examining the fraction of the correct
exon-exon junction that shared identical sequence (thus ‘‘indistin-
guishable’’) with the downstream intronic bases or the downstream
exon junction as a function of increasing nucleotides across the
junction (see the diagram in Fig. S2). If we allow only 1 nt across
the splice junction, for instance, �46% of splice junctions were
indistinguishable. The fraction of indistinguishable junctions de-
creases to only 1% if we require 4 nt across splice junctions. Using
this strategy, we detected 16 to 21% of known splice junctions
(constitutive and alternative) at the current tag density and curve-
fitting analysis suggests that our current tag density is already at the
predicted threshold (1%) (Fig. 4B, Table 1).

In an attempt to identify alternative splicing events, we used the
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ferential expressed genes were labeled red based on �2

(P � 0.01). (B) Comparison of fold changes determined
by sequencing and by quantitative measurement with
real time PCR. (C) Comparison with 5 published mi-
croarray datasets in LNCaP cells. The currently deter-
mined androgen-regulated genes showed 25% over-
lap with at least one published microarray study as
indicated by color-coded sections in the pie-chart. Spe-
cifically, 218 genes showed no overlap; 87 overlapped
with 1 report; 30 with 2; 10 with 3; 9 with 4, and only
1 gene was common with all 5 published reports. De-
tailed comparisons of individual genes identified in the
current and published studies were summarized in
Table S6. (D) Curve fitting the change in the number of
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sities. Dashed line indicated exponential curve fit; solid
line indicated power curve fit. R2 coefficients for each
fitted curve were displayed in Table 1. The graph indi-
cated that as the tag density increased the rate of
identification of additional transcripts (blue) and DHT-
induced transcripts (orange) decreased. The horizontal
lines indicated where the discovery rate drops below
5% (red) and 1% (green).
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simplest mode of alternative splicing (exon skipping) to construct a
hypothetical exon-junction database (EJDB) by piecing together
the 35 bases at the 3� end of each internal exon to the 35 bases at
the 5� end of individual downstream exons. We next aligned the
sequence tags to the EJDB, identifying 724 � 651 � 1,375 junctions,
approximately half (724) of which span only constitutive exons
(Table 2). Although this is by no means a comprehensive survey of
new alternative splicing events because exon skipping is only one of
multiple alternative splicing modes, the result indicates that the vast
majority of alternative splicing events (8) from measurable abun-
dant gene transcripts has already been covered by the existing
mRNA/EST databases (Table 2).

Finally, we addressed the false discovery rate in these analyses by

generating a list of ‘‘impossible’’ junctions consisting of exon junction
sequences joined in reverse order. For example, instead of splicing exon
1 to exon 3, we spliced exon 3 to exon 1. Using this approach, we found
that 472 junctions were mapped to this set of 1,929,065 scrambled
junctions, resulting in a false positive rate of 472/1,929,065 � 0.025%.
This compares to 40,125 (or 2.08%) junctions that were mapped to the
same number of ‘‘possible’’ junctions, indicating a false discovery rate
of 472/40125 � 1.2% among mapped junctions.

Conclusions
High-throughput sequencing is able to generate sequence data equiv-
alent to the entire EST collection, permitting both quantitative and
structural analysis of the transcriptome in the cell. We have developed
a molecular protocol, a computational pipeline for analysis of expres-
sion and alternative splicing, and a curve-fitting method for estimating
the number of tags required for detecting specific genomic features,
using the deep sequencing approach. On a prostate cancer cell model,
our current analysis revealed a set of androgen-responsive genes. Our
data also suggest prevalent poly(A)� transcripts from both annotated
protein-coding genes and intergenic regions and antisense transcripts,
paving the way for further molecular analysis of regulated gene expres-
sion in mammalian cells. Curve-fitting analyses also reveal limitations in
using deep sequencing to comprehensively detect alternative exons and
splice junction sequences: Even with the tag density at which �1%
additional discovery is achievable, we could only detect �20% of
mRNA/EST-verified splice junctions compared with �70% of gene
transcripts. Overcoming these limitations and performing comprehen-
sive and quantitative measurements may require a combination of
complementary tools like splice junction arrays that focus on annotated
splice junctions (9, 26, 27).

Materials and Methods
Cell Culture, qPCR and Construction of cDNA Libraries. Culturing LNCaP cells and
DHT treatment were as described in ref. 28. Primers used for qPCR are listed in
Table S4. Poly(A)� RNA from LNCaP cells mock-treated and treated with DHT for
48 h was selected twice on oligo(dT) Dynabeads (Invitrogen). Purified poly(A)�

RNA (�0.2 �g) was converted to cDNA with SuperScript III (Invitrogen) and 100
pmols of the first random primer (P1: 5�- AAT GAT ACG GCG ACC ACC GAN NNN
NNN N-3�). cDNA was purified with the PCR purification kit (Qiagen), blocked at
the 3� end by terminal transferase reaction with ddNTPs, and immobilized on the
streptavidin-coatedmagneticbeads (Invitrogen). cDNAonthebeadswerebriefly
washed 1� with 0.1 N NaOH and 2� with H2O before annealing of 100 pmols of
the second random primer (P2: 5�-CAA GCA GAA GAC GGC ATA CGN NNN NNN
N-3�) to the cDNA followed by extension with Taq polymerase at 25 °C for 30 min
and 72 °C for 1 min. The beads were washed 2� with prewarmed wash buffer [10
mM Tris (pH 7.6), 1 mM EDTA, 0.1 M NaCl, 0.1% Tween 80] and the second strand
DNAelutedwithH2Oat95 °Cfor10min.TheelutedDNAwasPCR-amplifiedwith
AmpliTaq Gold (Perkin–Elmer), resolved on 2% agarose gel, eluted with the
Qiagen PCR purification kit, and quantified on Nanodrop UV spectrometer.
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Fig. 4. Curve fitting the change in the number of exons and splice junctions
detected against increasing tag densities. Dashed line indicated exponential
curve; solid line indicated power curve. R2 coefficients for each fitted curves were
displayed in Table 1. (A) Decline in the rate of identifying additional exons as a
function of increasing tag density. (B) Decline in the rate of identifying additional
splice junctionsasafunctionof increasingtagdensity.Thehorizontal lines inboth
panels indicate where discovery rate drops below 5% (red) and 1% (green).

Table 2. Detection of known and novel splice junctions

Exons
skipped

EST-verified Novel

CE AS ACE CE AS ACE

Database
size

Junctions
detected

Database
size

Junctions
detected

Database
size

Junctions
detected

Database
size Detected

Database
size Detected

Database
size Detected

0 139,326 29,104 35,938 6,727 8,023 1,297 4,153 25 2,252 19 397 4
1 1,686 222 11,932 1,390 1,831 319 115,959 361 34,823 124 9,194 51
2 698 45 2,365 157 474 41 97,324 99 47,846 116 12,379 30
3 202 9 794 36 174 14 82,452 67 49,820 59 13,929 17
4 75 1 311 7 77 4 70,290 34 48,917 57 14,813 18
5 34 1 138 5 35 2 60,272 17 46,815 46 15,211 13
6 17 1 68 2 16 0 51,977 22 44,125 26 15,284 7
7 8 0 47 1 13 0 44,982 16 41,161 30 15,074 9
8 8 0 34 1 10 0 39,108 13 38,085 20 14,685 4
9 6 0 14 0 7 0 34,069 14 35,128 24 14,152 12

10 2 0 10 1 2 0 29,801 8 32,252 15 13,526 4
¥ 142,084 29,384 51,698 8,328 10,687 1,678 929,545 724 805,738 651 376,047 222
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Approximately 0.4 fmol of PCR products was applied per lane on the Solexa
flowcell for sequencing according to the manufacturer’s instruction.

Genomic Mapping of the Sequence Tags. Position-specific base compositions
were made by compiling all uniquely aligned reads. The first base of every
sequence tag was discarded because of nearly random utilization at the begin-
ning of all sequences. To eliminate redundancies created by PCR amplification, all
tags with identical sequences were considered single reads. After removal of
adaptor sequences from the reads, the reads were compressed to a nonredun-
dant list of unique sequence tags, which were then mapped to the human
genome (hg17) with MosaikAligner (29), using a maximum of 2 mismatches over
95% alignment of the tag (34 nt) and a hash size of 15.

Transcriptome Analysis. Genome sequences of human (hg17) and annotation for
protein-coding genes were obtained from the University of California Santa Cruz
(UCSC) (30). The lists of known human genes (knownGene containing 43,401
entries) and known isoforms (knownIsoforms containing 43,286 entries in 21,397
unique isoform clusters) with annotated exon alignments to human hg17
genomic sequence were processed as follows. Known genes that were mapped
todifferent isoformclusterswerediscarded.AllmRNAsalignedtohg17thatwere
�300 bases long were clustered together with the known isoforms. For the
purposes of measuring differential gene expression, all genes were considered.
For the purposes of inferring alternative splicing, genes containing �3 exons
were removed from further consideration. A total of 2.7 million spliced ESTs were
mapped onto the 17,478 high-quality gene clusters to identify alternative splic-
ing.Toeliminateredundancies inthisanalysis,finalannotatedgeneregionswere
clustered together so that any overlapping portion of these databases was
defined by a single genomic position.

An exon-body database (EBDB) was constructed as follows. Exons with canon-
ical splice signals (GT-AG, AT-AC, GC-AG) were retained, resulting in a total of
213,736 exons. Of these, 92% of all exons were constitutive exons, 7% had
evidence of exon-skipping, 1% exons were mutually exclusive alternative events,
3% exons had alternative 3� splice sites, and 2% exons had alternative 5� splice
sites. An exon-junction database (EJDB) was constructed as follows. For each
protein-coding gene, the 35 bases at the 3� end of each exon were concatenated
with the 35 bases at the 5� end of the downstream exon. This was repeated,
joining every exon of a gene to every exon downstream. This approach produced
1,929,065 theoretical splicing junctions. An equal number of ‘‘impossible’’ junc-
tions was generated by joining the 35-base exon junction sequences in reverse
order. MosaikAligner was used to align sequence tags to the junction database
requiring no �2 mismatches over 95% of the sequence tag (34 nt). In addition,
tags were required to have at least 4 nt across a specific splice junction. Junctions
were annotated as constitutive (CE) if all of the exons within the span of the
junction were annotated as constitutive (for a junction splicing exon 2 to 5, exons
within the span are 2,3,4,5). Conversely, if any of the exons within the span of the
junction were annotated as potentially spliced from EST or ACEscan annotations,
the junction was labeled SE or ACE, respectively (Fig. S3).

To determine the number of tags contained within protein-coding genes,
promoter,andintergenic regions,wearbitrarilydefinedpromoterregionsas3kb

upstream of the transcriptional start site of the gene and intergenic regions as
unannotated regions in the genome. Differentially expressed transcripts were
identified by enumerating the number of tags that mapped within the spliced
mRNA transcript in untreated and DHT-treated cells, using the total number of
tags mapped to exons in each condition as a basis for determining significance by
the �2 statistic. Comparison of differentially expressed genes (P � 0.01) to pub-
lished datasets of hormone-regulated genes was performed as follows. For each
of 1,000 iterations, an equal number of genes to our list of differentially ex-
pressed genes were randomly selected and compared with a published list of
hormone-regulated genes. The number overlapped was recorded, and the mean
and standard deviation of 1000 iterations was used to compute a Z score,
resulting in a P value computed assuming a standard normal distribution. GO
analysis was performed as described in ref. 25.

Curve-Fitting Method to Estimate Saturating Tag Density and Observable
Features. Tags were randomly sampled into subsets representing 10%, 20% etc. of
the total number of sequence tags available. These were aligned as described above
and the number of features detected was assessed. To determine the number of
sequence tags required to reach a user-defined threshold for saturation, the per-
centage change in discovering additional features was determined as follows:

T	n
 � sn

C	n
 � �F	n
 � F	n � 1


F	n � 1

�

where T(n) is the number of tags, s is the sampling size (in our case, 2 million tags),
n is a constant multiplier, C(n) is the empirical change in number of features
detected,andF(n) is thenumberofempirical featuresdetectedatn.Ascatterplot
of C(n) to T(n) was fitted with a power curve of the form c(n) � a � T(n)b and an
exponential curve of the form c(n) � aebT(n), where c(n) is the change estimated
by the curve fitting.
The equation that had the best fit, indicated by R2, was used to extrapolate the
tag density required to achieve a defined change in the number of features
detected. The number of estimated features was calculated by

f	n
 � �
i�m

n

f	i � 1
 � f	i � 1
 � c	i


where m is user-defined (in our case, m � 6).
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