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MicroRNAs (miRNAs), a class of ∼21–23 nucleotide long non-coding RNAs
(ncRNAs), have critical roles in diverse biological processes that encompass
development, proliferation, apoptosis, stress response, and fat metabolism.
miRNAs recognize their target mRNA transcripts by partial sequence com-
plementarity and collectively have been estimated to regulate the majority of
human genes. Consequently, misregulation of miRNAs or disruption of their
target sites in genes has been implicated in a variety of human diseases ranging
from cancer metastasis to neurological disorders. With the development and
availability of genomic technologies and computational approaches, the field
of miRNA biology has advanced tremendously over the last decade. Here we
review the genome-wide approaches that have allowed for the discovery of new
miRNAs, the characterization of their targets, and a systems-level view of their
impact.  2010 John Wiley & Sons, Inc. WIREs Syst Biol Med 2011 DOI: 10.1002/wsbm.128

INTRODUCTION

The field of miRNA biology emerged with the
discovery that the gene lin-4, which controls

developmental timing in the nematode Caenorhabditis
elegans, surprisingly did not code for protein, but
instead acted as a ∼22 nt RNA transcript.1,2

Experiments showed that this small RNA molecule
regulated its target, lin-14, by base-pairing to the
3′ untranslated region (3′ UTR) of lin-14 mRNA
via partial sequence complementarity.2,3 This work
established the dogmatic understanding of miRNAs as
posttranscriptional regulators that target the 3′ UTRs
of protein-coding genes to repress gene expression.
Since then, miRNAs have been shown to play a variety
of regulatory roles and target other genic regions in
addition to 3′ UTRs.4–12 The discovery that the second
characterized miRNA, let-7,13 was evolutionarily
conserved across bilateria,14 and that its expression
was regulated through the course of development,
sparked concerted efforts to identify other miRNAs
and elucidate their functions. A framework to study
the consequences of miRNA regulation emerged from
the findings that 3′ UTRs widely contain evolutionarily
conserved elements that are complementary to the
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5′ end of certain miRNAs and mediate repression by
these miRNAs.2,3,5,13,15–20 From these foundations,
the field of miRNA biology has quickly progressed
through the application of genome-wide approaches
for identification of miRNAs and their targets. Here
we review these tools and their contributions to
our understanding of miRNAs as global cellular
regulators.

COMPUTATIONAL APPROACHES
TO miRNA DISCOVERY

Soon after the first experimental efforts identified a
significant cohort of miRNAs,14,21–23 distinguishing
characteristics of these transcripts were utilized for
the development of in silico miRNA prediction tools.
Mature miRNAs are derived from a longer (∼70
nt) precursor hairpin structure (pre-miRNA).21–28

The most likely secondary structure of putative
pre-miRNA sequences can be predicted using RNA
folding algorithms, such as mfold and RNAfold,29

to identify these characteristic stem-loop structures.
These predictions, along with other common features
among known miRNAs, such as base-pairing within
the hairpin, evolutionary conservation, nucleotide
usage, and structural features, were the basis
for the first miRNA discovery tool, MiRscan.30

Using MiRscan, Lim and colleagues were able to
identify novel miRNAs by ranking predicted miRNA
hairpin precursors conserved between C. elegans and

 2010 John Wiley & Sons, Inc.



Advanced Review www.wiley.com/wires/sysbio

C. briggsae based on these criteria.30 Of these features,
they found that base-pairing potential and sequence
conservation across genomes were the most effective
predictors of validated miRNAs. Later successful
application of MiRscan to miRNA discovery in
vertebrate genomes demonstrated that generic features
of miRNAs are more broadly conserved than
the sequences themselves.31 Additionally, contextual
sequence and conservation features flanking miRNA
genes were observed to improve the sensitivity of
MiRscan.32 This work also improved the prediction of
miRNAs encoded within introns through the analysis
of introns in orthologous genes. Other groups have
improved their algorithms by defining very specific
patterns of conservation along the arms and loops
of miRNA precursors, as well as the surrounding
sequence.33,34 Less strict conservation considerations,
filtering for negative repetitive sequences, and different
emphasis on homology have also been applied to these
approaches.35,36

Due to selective pressures to maintain miRNA
complementary sites,37,38 conservation of these tar-
get sequences has served as a foundation for another
group of miRNA discovery tools.39–41 Generally, these
algorithms first identify short conserved motifs in
the 3′ UTRs of protein-coding genes. Next, genomic
searches for conserved sequences complementary to
these motifs are used to find potential miRNA
genes. Alternatively, in plants a search of intergenic
sequences for motifs complementary to mRNAs can
be applied.40 Where matches are found, the flanking
region is tested for its ability to form stable hairpin
structures. A disadvantage of these homology and
conservation-based algorithms is their general inabil-
ity to identify species-specific or otherwise divergent
miRNAs. This is especially a concern given the grow-
ing body of evidence supporting the rapid evolution
of miRNAs.42–44

To improve the sensitivity of miRNA pre-
diction, ab initio algorithms have been developed.
These approaches do not require conservation cri-
teria, although some applications have chosen to
maintain these considerations.45–47 Instead, these
methods rely on intrinsic characteristics of known
miRNAs to define sets of features that can accurately
describe the structure and sequence of these tran-
scripts. Supervised learning algorithms are then used
to weigh these features based on positive and neg-
ative training sets. Positive datasets include known
miRNAs, whereas negative datasets are typically
pseudo-hairpins—genomic sequences that form stem-
loop like structures but do not contain a mature
miRNA. The trained algorithm is used to measure the
similarity of candidate miRNAs to known miRNAs.

Careful definition of datasets, for example, through
consideration of other non-coding RNAs (ncRNAs),
and rigorous training have been shown to improve
these approaches.48 The choice of the machine-
learning algorithm, either kernel-based (e.g., support
machine vector, hidden Markov model, relaxed kernel
density estimator) or logic based (e.g., decision trees,
decision rules), is another significant variation of these
methods. Support machine vectors (SMVs) are known
for their success in a wide range of bioinformatics
applications, including miRNA discovery.49–52 How-
ever, it has been demonstrated that the use of a relaxed
kernel density estimator, over an SMV, can be superior
for species-specific miRNA discovery by exploiting
more local information in the training dataset.53 Jiang
and colleagues have also described a random forest-
based algorithm that outperforms previous SMV-
based tools.54 Some groups have combined kernel-
and logic-based approaches, as well as other tradi-
tional sequence comparisons and structure prediction
tools.45,55 Ab initio approaches are particularly useful
for application to rapidly evolving organisms and/or
those with little homology to other genomes, as is the
case with viruses such as the Epstein-Barr virus.56

HIGH-THROUGHPUT SEQUENCING
FOR THE IDENTIFICATION OF miRNAS

Despite advances in in silico miRNA gene finding, sen-
sitivity and false-positive rates remain a concern. Early
approaches for genome-wide in vivo miRNA capture
were limited by their abilities to clone and sequence
these transcripts.21–24,57–59 With the availability of
next-generation sequencing technology, millions of
small RNAs can be sequenced relatively inexpensively,
offering an improved avenue for miRNA discovery.60

An advantage of these approaches is their ability
to detect evidence of expressed miRNAs, in a cell-
type and context-specific manner. See Figure 1 for a
review of in silico versus small RNA-seq (smRNA-seq)
miRNA discovery approaches. One of the first passes
at miRNA discovery using next-generation sequencing
successfully identified the majority of miRNAs anno-
tated in C. elegans at that time, some of which had only
previously been detected through computational pre-
dictions or PCR assays, as well as 18 novel miRNAs.61

In addition, smRNA-seq-based algorithms are less
reliant on feature extraction from known miRNAs
than purely in silico approaches, in particular with
regard to conservation. For example, analyses of small
RNA transcripts from human and chimpanzee brains
more than doubled the number of known miRNA
genes, and revealed a surprisingly large percent of
novel miRNAs conserved only in mammals (30%) or
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Advantages DisadvantagesApproach Criteria

Conservation- 
and homology- 
based 
algorithms

Ab initio 
algorithms 
that do not use 
conservation 
criteria

Conservation and 
homology; 
Hairpin predictions;
Structure and sequence 
features of known 
miRNAs and surrounding 
sequences 

Structure and sequence 
features of known 
miRNAs;
Optional: hairpin 
predictions

Genome-wide miRNA predictions; 
Useful for prediction of 
evolutionarily-imporant miRNAs

Poor for detection 
of miRNAs in 
rapidly evolving 
genomes

Cannot predict 
miRNA expression 
patterns

In silico 
prediction 
algorithms

Algorithm 
overfitting 
using 
features 
of known 
miRNAs can 
compromise 
sensitivity for 
novel miRNA 
identification

Greater sensitivity for 
non-conserved miRNAs

Predictions using high- 
throughput small RNA 
sequencing data

Hairpin predictions; 
Lengths and abundance 
of reads represent 
miRNA processing 
byproducts

Volume of data 
and processing 
may be a 
technical 
challenge for some 
groups

High information content of reads; 
Identification of expressed miRNAs; 
Cell-type and context specific 
readout; 
Identification of isomiRs and non- 
conserved miRNAs

FIGURE 1 | Genome-wide approaches for miRNA discovery.

in a single species (8%).62 This is compared to known
miRNAs, also cloned by the study, whose original
discovery was largely driven by conservation-based
approaches and thus were significantly more enriched
for transcripts conserved among vertebrates and mam-
mals (75%), with only about 1% specific to humans.
This work revealed the power of sequencing to identify
miRNAs at an unprecedented level of sensitivity.

In 2008, the Rajewsky group developed miRD-
eep, the first publicly available software package for
the discovery of miRNAs using smRNA-seq data.63

The general strategy of smRNA-seq based miRNA
discovery is to search genomic sequences for evi-
dence of hairpin structures, and then determine if
sequencing reads aligned to these structures mimic
miRNA-processing byproducts. These byproducts are
short sequences of largely invariant lengths corre-
sponding to the mature miRNA, the complementary
sequence (miRNA∗) within the hairpin, and the loop
of the hairpin. The most abundant of these transcripts
is expected to be the mature miRNA sequence, as
the miRNA* and hairpin loop are generally degraded
during processing. The distinguishing abundance and
lengths of these transcripts provide a relatively high
level of information content that can be captured using
high-throughput sequencing. This is an advantage
for algorithms using this sequencing data to iden-
tify miRNAs, as a major barrier for purely in silico
miRNA prediction algorithms has been the relatively
low information content of short genomic miRNA
sequences and even their longer precursors. However,
interpretation of smRNA-seq data remains less than
straightforward as biases arise from technical aspects
related to sequencing accuracy, genomic mapping

efficacy, and small RNA library preparation. Hetero-
geneous pools of small RNAs including degradation
products and other ncRNAs, as well as sequence vari-
ations arising from single nucleotide polymorphisms
and posttranscriptional RNA editing, are confounding
factors that should be considered for accurate miRNA
annotation.64 Like purely in silico approaches, over-
fitting of algorithms using features of known miRNAs
is also a concern, as this can compromise their ability
to reliably identify novel miRNAs.

Despite these confounding factors, the Rajew-
sky group successfully identified new miRNAs using
miRDeep in C. elegans, human, and dog.63 Con-
currently, the Graveley and Yeo groups reported a
set of novel planarian (S. mediterranea) miRNAs
mined from smRNA-seq data using a regularized
least-squares classification algorithm, MIResque,65

as did the Rajewsky group using miRDeep.66 Later
that year, the first web-based tool for miRNA pre-
diction using sequencing data became available.67

As in traditional miRNA finding, different groups
have chosen to combine various tools for precursor
predictions and free energy calculations to develop
miRNA discovery pipelines.68,69 Purification of miR-
NAs along with bound protein complexes24 coupled
with high-throughput sequencing is a powerful way
to identify active transcripts.70–76 To date, about
750 human miRNAs have been reported, as docu-
mented in miRBase, an online database repository
for known miRNAs.77,78 A caveat of these annota-
tions is that additional experimental validation may
be necessary to confirm that their transcripts are pro-
cessed by the miRNA machinery and represent bona
fide miRNAs.64 As our knowledge of miRNA biology
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improves and sequencing power increases, it is likely
that the number and quality of miRNA annotations
will continue to increase, particularly in large and/or
poorly annotated genomes.64,79

In addition to identification of novel miRNAs,
deep sequencing has also been proved to be a pow-
erful tool for quantifying miRNA expression and
defining variation within miRNA sequences. The com-
prehensiveness and sensitivity in identification of novel
and lowly expressed transcripts are significant advan-
tages of smRNA-seq data over traditional microarray
platforms. The ability to determine absolute expres-
sion values that can be compared within and across
experiments represents another distinct advantage
of sequencing data over the relative quantifications
given by microarray measurements.80 Furthermore,
sequencing approaches do not suffer from cross-
hybridization artifacts observed in microarray exper-
iments. Small RNA-seq has now been applied to
measure miRNA expression and variation in a wide
range of studies.64,81–89 These studies capture the cell-
type and context-specific expression of miRNAs, as
suggested by previous approaches. However, Land-
graf and colleagues point out that the number of
miRNAs contributing to these unique profiles is rela-
tively small compared to those that are ubiquitously
expressed.81 In particular, the miRNA expression pro-
files in embryonic and induced pluripotent stem cells,
and differentiated states from these cells, have been
an area of intense interest.68,74,90–96 Importantly, it
has been suggested that miRNAs may serve as precise
indicators and effective determinants of pluripotency
and cell fate.97–107

The nucleotide-level resolution that RNA
sequencing provides has also influenced the way
researchers approach the study of posttranscriptional
modifications of miRNAs. MiRNAs have been shown
to be the subjects of editing effects such as adenosine
to inosine (A-to-I) editing, mediated by the ADAR
proteins,108 and posttranscriptional end modifications
such as uridylation.109 Through the use of smRNA-
seq, the prevalence of these and other sequence modifi-
cations, and their implication for miRNA regulation,
has come to light.64,81,110,111 In response, the term
‘isomiRs’ has been coined to describe these miRNA-
variants.68 Editing can alter miRNA processing and
targets and thereby their specific regulatory effects.112

A growing body of evidence supports the idea of cell-
type-specific miRNA variant profiles, emphasizing the
unique physiological and pathological roles of these
transcripts.68,113 Accordingly, web-based databases
and tools have been developed to catalog, process, and
analyze this information, particularly in the context
of biological pathways.113 A detailed understanding

of cell-type-specific miRNA expression and variation
is vital for extrapolation of their roles in orchestrating
regulatory networks of these cells.

miRNA TARGET PREDICTION
ALGORITHMS

The critical link for understanding the diverse roles of
miRNAs in the cell is the mRNA transcripts they tar-
get. It is the elucidation of these targets and rules that
govern mRNA target recognition that has been, and
will continue to be, instrumental in our understand-
ing of miRNA biology and how their misregulation
can lead to disease. The original basis for miRNA
target identification arose from early experiments that
demonstrated that partial sequence complementarity
was sufficient for miRNA–mRNA interactions.2,3,13,16

Searching genomic sequences for short stretches of
nucleotides with near perfect complementarity to
known miRNAs was successful for miRNA target
finding in plants, but not in animals where imperfect
pairing is prevalent.114 In 2003, Lewis and colleagues
observed that miRNA target sites tend to be more con-
served across evolution than what would be expected
by chance.18 By refining the complementary region to
bases 2–8 from the 5′ end of the miRNA (the ‘seed’
region) and requiring pairing to conserved 3′ UTR
mRNA sequences, their algorithm, TargetScan, suc-
cessfully predicted many miRNA targets above back-
ground false positives.18 The functional importance
of this ‘seed rule’ was subsequently verified through
experimental methods.7,37,20,115 Other algorithms that
incorporated multiple sequence alignments of 3′ UTRs
to identify conserved miRNA seed-complementary
regions showed improved success in miRNA target
finding.4,5,116–118 Indeed, biochemical data support
the conclusion that conservation criteria enhance pre-
diction of functional and effective target sites.119 How-
ever, functional miRNA target sites are not confined
to those that are conserved. In fact, some evidence sug-
gests that nonconserved target sites are more prevalent
than conserved ones.120 In response to this, a number
of prediction tools have removed or relaxed conserva-
tion requirements in their predictions.10,121–123

Although conserved seed-pairing requirements
helped to improve prediction algorithms, additional
contextual features play a role in target recogni-
tion. The identification of these features has been
accomplished through interplay between experimen-
tal and computational approaches. Mining of their
own and previous experimental work led to the
observation that a 6 nt seed match (miRNA bases
2–7)5 could be enriched by an extended seed with a
complementary site at position 8 (7mer-m8), and/or
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an A opposite the miRNA position 1 (7mer-A1), or
with an A opposite miRNA position 9.5,7,18,118,124

The functionality of the 7mer-A1 and 7mer-m8 sites
was later confirmed at the translational level by pro-
teomics data.119,125 Identification of these 7–8 nt seed
matches and/or multiple seed-complementary sites
in a single UTR improves the specificity of target
predictions.5,7,118,126 These multiple, closely spaced
seed-complementary sites on a single mRNA tran-
script have been shown to act cooperatively, increasing
target site efficiency.7,10,20,72,115,127,128 Using expres-
sion data to identify cooperative targeting of coex-
pressed miRNAs may further improve identification
of true miRNA targets.10,118,125 Some target predic-
tion tools have also incorporated tolerance of a G:U
wobble,77,122,123 though this adds little to their per-
formance over algorithms requiring stringent Watson-
Crick base-pairing.5,119,125 ‘Supplemental’ and ‘com-
pensatory’ base-pairing around sites 13–16 of the
miRNA has been suggested to complement per-
fect seed matches or ameliorate targeting when the
seed match is not perfect, respectively.7,10,13,20,129

Though some analyses have associated this pairing
with increased target site efficacy,10 the infrequency of
these events and weaker conservation have prevented
them from having a significant impact on target pre-
diction algorithms overall.126 More recently, results
from biochemical target-finding approaches have sug-
gested unique base-pairing mechanisms for individual
miRNAs and specific to genic regions.75,130 A class of
rare but functional ‘centered sites’ with base-pairing
between miRNA bases 4–14 or 5–15 has been sim-
ilarly observed.131 These observations may help to
explain some of the confusion surrounding supple-
mental and compensatory binding. Incorporation of
miRNA-specific targeting rules is expected to improve
future target prediction tools.

Other considerations such as free energy binding
of the miRNA–mRNA duplex, secondary structure
accessibility, nucleotide content in and around
the putative target site, and position of seed-
complementary sites within the mRNA transcript
have also been associated with target site efficacy
and incorporated into various target prediction
algorithms.4,10,116–118,121,123,124,132–135 Many of these
features that have, and will, contribute to miRNA
target prediction algorithms were mined from data
produced by experimental approaches to genome-
wide target finding, as discussed below. Overall,
target prediction algorithms have represented a
major advancement in the field of miRNA biology.
Importantly, by using rules learned from miRNA
discoveries in a number of organisms, they enabled
identification of novel targets in organisms where

no known targets existed. For a complete review of
miRNA target prediction algorithms, see a review by
Bartel.126

EXPERIMENTAL IDENTIFICATION
OF miRNA TARGETS

Despite advances in the sensitivity of target
prediction algorithms, the overlap of predicted targets
between different platforms remains relatively small.
Additionally, these in silico predictions are not
cell-type or context specific. In response to these
limitations, in vivo and in vitro approaches to genome-
wide miRNA target discovery have been developed.

Transcriptome and Proteome Profiling
for Target Finding
The advent of microarray technology presented an
opportunity for researchers to examine the large-scale
impact of miRNA regulation and infer direct miRNA
targets (Table 1). In 2005 Lim and colleagues showed
that HeLa cells transfected with muscle or brain-
specific miRNAs, miR-1 or miR-124 respectively,
took on mRNA expression patterns characteristic
of those tissue types.37 This change in expression
was presumably mediated by these miRNAs, since
down-regulated transcripts were enriched for miR-
1 or miR-124 seed-matched sites. These results
suggested that miRNAs help to define tissue-specific
gene expression and corroborated the ‘seed rule’ as
the mechanism by which miRNAs function. Prior
to this work, translational repression was thought
to be the main regulatory function of miRNAs in
animals. However, because significant changes in
mRNA levels were observed in response to miRNA
overexpression, it seems that many miRNAs have
broad effects at the level of RNA stability. Finally,
these results were the first biochemical support for
the concept initially suggested by in silico target
predictions that miRNAs may have a large number
of targets. A subsequent study in zebrafish provided
in vivo evidence that each miRNA may directly
target hundreds of mRNA transcripts.43 Furthermore,
Linsley and colleagues used complementary gain-
and loss-of-function approaches to show that target
transcripts can be coordinately regulated by miRNAs
with homologous seed regions.136 The inability of
computational algorithms to predict the majority
of experimentally identified targets136 and the high
percentage of non-conserved targets found43 reveal
significant shortcomings of in silico approaches, in
particular those that rely on conservation.
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Approaches for perturbation of endogenously
expressed miRNAs are an important complement
to overexpression studies. Many studies, such as
the ones described above, have utilized dicer
mutants and knockdowns for loss-of-function miRNA
studies.43,136 Without dicer processing, mature miR-
NAs cannot be excised from precursor hairpins,
blocking miRNAs dependant on this pathway.25–28

Specific miRNA mutants or knockdown have also
proved extremely useful for the study of individual
miRNAs.6,8,137,138 miRNA silencing can be accom-
plished using engineered antisense oligonucleotides
such as ‘antagomirs’137 or locked nucleic acids
(LNA),139 siRNAs,6 miRNA sponges,140 and most
recently small molecule inhibitors (SMIRS).141,142

Combined exogenous gain-of-function and endoge-
nous loss-of-function studies have been proved to
be both effective methods for identification of the
same, physiologically relevant targets, and target-
ing rules.10,119,125,128,136 MiRNA inhibitors have also
formed the foundation of miRNA-centric therapies,
which have progressed quickly from their inception
to effective disease treatment in primates in less than
5 years.137,143

Although studies documenting transcriptome
changes were informative with respect to miRNA
regulation and targets, they were incapable of demon-
strating the effect of miRNAs on translational reg-
ulation. Nakamoto and colleagues used a polyribo-
some profiling approach to show that transcripts
released from translational repression after miR-30a-
3p knockdown represented in vivo targets of this
miRNA.6 Subsequent works have employed stable iso-
tope labeling by amino acids in cell culture (SILAC)
to detect more comprehensive changes in the pro-
teome in response to miRNA regulation.119,125,144

This approach uses mass spectrometry to measure
mass ratios of protein peptides from control cells ver-
sus SILAC-labeled cells.145,146 Using SILAC and miR-
1 overexpression, Vinther and colleagues found that
targets repressed at the protein level recapitulated seed
enrichment observations and largely overlapped with
the set of targets identified through transcriptional
changes.37,144 However, some repressed transcripts
appeared to be controlled only at the protein level
demonstrating the utility of this approach for identi-
fication of these translationally repressed targets. By
expanding their SILAC-based approaches to thou-
sands, rather than hundreds, of proteins, studies by
both the Bartel and Rajewsky groups provided valu-
able insight into genome-wide translational regulation
by miRNAs.119,125 Their data corroborated much of
known miRNA targeting rules that had been suggested
by computational and transcriptional studies, but at

the protein level. As shown by these previous stud-
ies, they also identified functional targeting outside of
3′ UTRs and provided proteome-wide evidence that
these coding region sites were less effective in repress-
ing gene expression than 3′ UTR target sites. Many
sites identified by these studies were non-conserved,119

as indicated by previous works, and furthermore these
sites had weaker effects on targets than conserved sites
overall.125 Their works showed that while a group of
genes is primarily regulated by miRNA at the level of
translation, mRNA destabilization seemed to be the
prevailing method of regulation in these mammalian
models, as supported by subsequent work.147 Because
protein level changes were modest overall, data from
these works have contributed to the model that miR-
NAs fine tune gene expression in the cell.119,125 This
control extended to hundreds of direct targets and
thousands of downstream effectors, providing essen-
tial evidence that miRNAs have an expansive impact
on protein production (Table 1).

IP-Based Approaches for miRNA Target
Finding
Instead of looking at gene expression as indi-
rect readouts of miRNA regulation to infer target-
ing, researchers began to identify ways to capture
actual target transcripts. In the cell, the mature
miRNA associates closely with the Argonaute pro-
tein while it guides the RNA-induced silencing com-
plex (RISC) to target mRNAs. Tenenbaum and
colleagues demonstrated that immunoprecipitation
(IP) of RNA-binding proteins (RBPs), followed by
microarray analysis, could be used for the study of
associated RNA transcripts, providing insight into
posttranscriptional regulation in a cell-type-specific
manner.148 Many similar methods originally devel-
oped for the study of a wide range of RBPs have now
been applied to miRNA–ribonucleoprotein complexes
(miRNPs).149–153 Table 2 summarizes the application
of these approaches to the study of miRNA targeting.
Easow and colleagues used IP of tagged Ago1 pro-
tein to demonstrate that this type of approach could
be used in an unbiased search for miRNA targets in
Drosophila.8 Their work follows the general model of
these IP-based studies, that is, targets are identified as
transcripts enriched by protein IP over controls in the
presence of endogenous or overexpressed miRNAs or
depleted in miRNA-deficient samples. The ability to
identify miRNA seed-complementary sequences, typi-
cally in 3′ UTRs of these transcripts, provides further
evidence that these represent bona fide miRNA targets.

In these approaches for miRNA target finding,
the choice of antibody or protein target, control condi-
tions used for comparison, and readout methods have
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TABLE 1 Gene Expression Array and Proteomics Approaches to miRNA Target Identification

Method miRNA Expression Organism Cell Type Significant Conclusions Reference

MiRNA
overexpression,
measure changes
in mRNA levels
via microarray

miR-1, miR-124,
mutant miR-124
transfection

Human HeLa MiRNA targets can be detected in cell
lines using microarrays; miRNAs
cause wide-spread RNA-level
changes; tissue-specific gene
expression can be controlled by
miRNAs; seed sequences have a
functional role in targeting; miRNAs
have many targets with diverse
functions

Lim et al.37

Intravenous
antagomir
injection, measure
tissue-specific
mRNA expression
via microarray

miR-122 silencing
through
antagomir

Mouse Liver tissue Antagomirs efficiently antagonize
function of specific miRNAs;
enrichment for seed-matched sites
in 3’ UTRs of genes up-regulated in
response to miRNA silencing

Krutsfeldt et al.137

MiRNA knockdown,
use microarrays to
measure total
mRNA and infer
increased
translation by
detection of
transcripts shifted
to the heavy
polyribosome
fraction

miR-30a-3p
knockdown with
siRNA

Human HepG2 Detected a shift in target transcripts
towards the heavy polyribosome
fraction upon miRNA knockdown;
some targets had modest mRNA
increase upon miRNA knockdown;
seed-matched sites in 3’ UTRs and
coding regions of targets; poor
algorithm prediction of
experimentally identified targets

Nakamoto et al.6

Compare mRNA
expression in
embryos lacking
miR-430 with WT
or miR-430 rescue
embryos via
microarray
analysis

miRNA deficiency;
miR-430 rescue;
endogenous

Zebrafish Whole embryo;
Dicer mutant

MiRNAs can widely cause
deadenylation of mRNAs; a single
miRNA can have hundreds of
targets; target sites are under rapid
evolution; 3′UTRs of regulated
transcripts enriched for seed-target
sites

Giraldez et al.43

MiRNA
overexpression,
measure protein
level changes by
SILAC

miR-1 transfection Human HeLa Overlap with transcriptome changes
from Lim 2005; some targets only
detected by protein level changes;
enrichment for seed-matched sites
in 3’ UTRs of affected proteins

Vinther et al.144

Individual or
combination
miRNA
overexpression or
depletion,
measure changes
in mRNA levels
via microarray,
monitor the affect
on cell cycle
progression

Transfection of 24
individual miRNA;
miR-16 expression
by shRNA and
genomic fragment
of endogenous
locus; miR-16 and
miR-106b
depletion by
anti-miRs

Human HCT116 Dicerex5,
DLD-1
Dicerex5, and
WT; A549;
MCF7;
TOV21G;
HeLa; SW1417

MiRNAs with the same seed
coordinately regulate the same
transcripts; gain- and
loss-of-function approaches largely
identify the same targets; miR-16
miRNAs negatively regulate cell
cycle progression; siRNA pools
against miR-16 targets can
phenocopy the miR-16-induced
phenotype; ∼60% of targets were
missed by computational
predictions; miRNA regulation is
dependent on seed sequence

Linsley et al.136
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TABLE 1 Continued

Method miRNA Expression Organism Cell Type Significant Conclusions Reference

MiRNA depletion in
a mouse model,
measure mRNA
expression level
differences in
CD4+T cells

miR-155 deficiency Mouse Th1, Th2 -
bic/miRNA-155
mutant

bic/microRNA-155 has key role in
immune system homeostasis and
function; miR-155 seed-targets
enriched in 3’UTRs of targets over
other miRNAs; verified c-Maf
targeting by miR-155

Rodriguez et al.138

MiRNA
overexpression,
measure mRNA
level changes via
microarray,
computational
analyses

Transfection of 11
individual miRNAs

Human HeLa Analyses of target features showed
site efficacy improved by:
positioning away from the stop
codon and center of 3’UTRs; local
AU enrichment; proximity of
targets for coexpressed miRNAs

Grimson et al.10

MiRNA
overexpression in
cell or in vivo miR
deficiency,
measure protein
levels via SILAC
and mRNA via
microarray

miR-125, miR-1,
miR-181
transfection;
miR-233 deficient
mutant;
endogenous

Human
Mouse

HeLa; miR-233
knockout mouse
neutrophils

Greater regulatory effect of 3’UTR
targets versus coding regions;
protein repression associated with
7-8mer seed-matched sites; same
targeting principles revealed by
ectopic and endogenous miRNA
expression; widespread evidence
of non-conserved target sites;
overall prevalence of mRNA
destabilization as mechanism of
miRNA regulation

Baek et al.119

MiRNA
overexpression or
depletion,
measure protein
levels by
pulse-labeling
amino acids at
different time
points (pSILAC),
mRNA changes
measured via
microarray

miR-1, miR-155,
miR-16, miR-30a,
let-7b
transfection;
let-7b LNA
depletion

Human HeLa Pulse-labeling captures early effects
of miRNA regulation on
translation; miRNAs regulate
expression of hundreds of proteins
at a modest level; synergy of
multiple seed sequences; most
targets repressed at both the
mRNA and protein level; miRNA
overexpression experiments are
physiologically relevant; target
sites in 3’UTRs exhibit the
greatest regulatory effect

Selbach et al.125

been customized by researchers performing the work.
Instead of microarray analysis, the Meister group used
traditional sequencing methods to identify targets of
both Ago1 and Ago2.154 While they found that these
proteins bound largely non-overlapping sets of tar-
get mRNAs, subsequent work has suggested the Ago
proteins do bind redundant target sets.71 As seen for
array-based approaches, this work emphasized the
utility of biochemical approaches in identifying tar-
gets missed by prediction algorithms.154 In addition
to Ago1–4, Landthaler and colleagues used IP of asso-
ciated TNRC6 GW182 family member proteins to
identify miRNA targets in human cells.71 Similarly,
Zhang and colleagues targeted GW182 homologs in
C. elegans to identify known and novel miRNA tar-
gets in this organism.70 Karginov and colleagues also

used known C. elegans miRNA targets to validate the
efficacy of their approach and its reliance on seed-
site complementarity to identify target transcripts.128

In addition to IP enrichment, they measured mRNA
expression level changes in response to miR-124a
overexpression. Analysis of this data showed that
miR-124a seed sequences were enriched not only in
down-regulated targets, but also in targets showing
no mRNA expression changes. This suggested that
the latter group of genes was regulated by transla-
tional repression, and this was confirmed for 21 out
of 30 of these targets.

A consensus of parallel Ago-IP and transcrip-
tome analyses is that IP datasets are more effective for
miRNA target identification than comparing changes
in mRNA expression alone.72,128 Taking these studies

 2010 John Wiley & Sons, Inc.
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one-step further, Hendrickson and colleagues com-
bined their IP-based method with a polysome profiling
approach to estimate translational rate from ribo-
some density and occupancy.155 Results of this work
agree with previous findings that mRNA decay is
the primary cause of protein reduction upon miRNA
targeting,119,125,144 and also suggest that translational
repression is quickly followed by mRNA degradation,
explaining the correlation between mRNA abundance
and translation. Additionally, the inhibition of trans-
lational initiation or stimulation of ribosome drop-off
near the translation start site is proposed as the
primary means of translational regulation by miR-
NAs. As suggested by computational predictions and
previous experimental work,4–7,9,10,119,125,156 a num-
ber of these studies also noted evidence for miRNA
targets in coding regions and 5′ UTRs, in addition
to 3′ UTRs, implying diverse regulatory roles of
miRNAs.8,72,155

As was seen with transcriptome and proteome
profiling approaches, these IP-based methods were
scrutinized for measures predictive of miRNA target-
ing that could be mined from their data.157 By com-
bining information from both types of studies, along
with their own IP experiments, Hausser and colleagues
were able to define features indicative of targeting
and those indicative of mRNA degradation.157 They
found the best indicators of targeting were the struc-
tural accessibility of the seed-match and target site,
and the free energy of miRNA–mRNA hybridization.
Characteristics of sites causing mRNA degradation
were nucleotide composition in and around the target
site, with U content being most predictive of degra-
dation. Secondly, in some, but not all datasets, these
sites had more accessible secondary structure. Target
sites causing mRNA degradation were more conserved
than those with targeting alone, supporting the con-
clusion that degradation, rather than translational
repression, is the main function of miRNAs. Overall,
it was concluded that a combination of sequence and
structural aspects makes the best model for miRNA
target prediction.

CLIP and HT-Sequencing Based miRNA
Target Finding
The next-generation of genome-wide biochemical
assays for miRNA target finding was ushered in
with reports from the Darnell and Pasquinelli/Yeo
laboratories.73,75 Their approaches, and others like
them, benefit from several adaptations to the original
IP-based methods, allowing for improved target
finding. A major disadvantage of traditional methods
that relied on co-IP of RBPs with target RNAs is

the co-precipitation of unrelated RBPs along with
their RNA targets and spurious in vitro RBP–RNA
interactions.158 To avoid these problems, the cross-
linking immunoprecipitation (CLIP) methodology
developed by the Darnell lab exploits the property
that UV-irradiation induces covalent bonds between
proteins and nucleic acids when contact distances
are within angstroms.150 See Figure 2 for a general
description of these approaches.

Through CLIP coupled with high-throughput
sequencing (HITS-CLIP or CLIP-seq), the identifi-
cation of RNA-binding protein target sites is now
possible at nucleotide-level resolution.73,75 This level
of resolution of target sites was not possible using
hybridization of long transcripts on cDNA arrays.
Using sequencing data from mouse brain tissue, Chi
and colleagues calculated Ago-CLIP reads that clus-
tered together, representing Argonaute binding sites,
and defined an average ‘Ago-mRNA footprint’.73

In support of earlier work, but with greater reso-
lution than previously obtainable, Ago-binding was
identified primarily in 3′ UTRs, and also in coding
regions, introns, and ncRNAs. Overall, they were
able to demonstrate that their approach could identify
previously supported miR-124 target sites, especially
those most likely to have a significant influence on
downregulation of targets at the mRNA and protein
levels. Looking at the function of proposed targets,
regulatory maps of miR-124, miR-125, and miR-
9 corresponded well to what is known about their
involvement in neural growth and differentiation.

The significance of improved target site resolu-
tion made possible through the use of high-throughput
sequencing was emphasized by the identification of
new targeting features by the Pasquinelli/Yeo group.75

Using a similar approach but in whole animals,
Zisoulis and colleagues profiled binding sites of the
worm ortholog of Argonaute, ALG-1, in C. elegans.
An advantage of this system was that it allowed
Zisoulis and colleagues to capture in vivo miRNA
regulation in a context-specific manner through cross-
linking of developmentally synchronized whole ani-
mals. In addition, an alg-1 mutant strain of worm was
available as a negative control, and known miRNA
target sites served as positive controls. Known fea-
tures of miRNA target sites were distinguished in
the ALG-1 binding data such as greater conservation,
secondary structure accessibility, and enrichment for
seed-complementary sequences. Beyond identification
of ALG-1 binding outside of 3′ UTRs, they showed
coding-exon target sites had significant pairing capac-
ity to the central region of miRNAs and lacked CU rich
motifs found in 3′ UTR binding sites. These sequence
variations may be linked to the functional difference of

 2010 John Wiley & Sons, Inc.
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FIGURE 2 | CLIP-seq overview. The CLIP-seq method for identifying miRNA target transcripts can begin with different types of starting material,
(a) either whole organisms, cell culture optionally grown in the presence of photoreactable ribonucleosides, or tissue samples. (b) UV-irradiation is
used to covalently cross-link proteins with interacting nucleotides. (c) Proteins of the RISC complex associate with the Argonaute protein bound to
miRNA and target mRNA. (d) Immunoprecipitation of the Argonaute or other RISC member protein that associates with miRNAs can be used to
co-precipitate bound RNA transcripts. (e) Unbound RNA transcripts are degraded, for example with MNase treatment. (f) A 3′ linker for adaptation to
the Illumina sequencing platform is ligated to precipitated RNAs. (g) Radiolabeling and (h) SDS-PAGE are used to purify and select RBP–RNA
complexes of interest. (i) Proteins bound to RNA transcripts are degraded before (j) ligation of the 5′ sequencing linker and (k) preparation of a cDNA
library via RT-PCR and followed by further PCR amplification. (l) Sequencing is typically performed on the Illumina/Solexa system; reads returned
correspond to the miRNA and mRNA originally bound in the RISC complex.

3′ UTR target sites noted in this and previous works.
Genic location of target sites may also be related to
functional category of the target gene, as some distinc-
tion in functional categories was seen between groups
of genes with 3′ UTR targets versus those with coding-
exon targets. Overall, enrichment was seen for targets
in miRNA regulatory genes, indicating an autoregu-
latory function of miRNAs. Evidence was also found
for specific seed-pairing rules for individual miRNAs.
For example, lin-4 showed strongest pairing capacity
for sites 4–9 and 14–19, rather than canonical seed
sites 2–7. This flexibility of miRNA base-pairing may
explain the lack of seed matches in a large number of
Ago-CLIP clusters identified by the Darnell group.73

MiRNA-specific targeting rules may be a common
occurrence, and as such, will help to improve in silico
target predictions and our understanding of the in
vivo role of these miRNAs.130

Recently, the Tuschl group added a modification
to the cross-linking protocol by incubating cells with

the photoactivatable ribonucleoside 4-thiouridine
(4SU) prior to UV-irradiation.76 The effect of this is
that cross-linked sites can be distinguished by thymi-
dine to cytidine transitions in the cDNA prepared
from extracted RNA. They utilized this approach,
termed PAR-CLIP (photoactivatable ribonucleoside-
enchanced crosslinking and IP), to improve cross-
linking efficiency, remove noise, and refine target sites.

In addition to the use of high-throughput
sequencing and cross-linking, next-generation target-
finding approaches include a number of other modifi-
cations aimed at decreasing noise and further refining
target sites. Partial RNA digestion, for example by
MNase or RNase T1, has been used to degrade RNA
species not protected by the covalently bound pro-
tein. This both refines the bound sequence to improve
target resolution and generates small fragments of
RNA that can be readily sequenced. Separation of
RNA–protein complexes by SDS-PAGE, followed by
autoradiography visualization allows for extraction
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of RNA–protein species of interest and removes noise
from non-specific contaminating RNAs.159 In prepa-
ration of the cDNA library for sequencing, choice of
primers and PCR conditions must also be considered.
Although the Illumina/Solexa platform has been used
for these approaches thus far, one can envision how
new methods of single-cell, padlock probe, or other
undeveloped sequencing approaches may complement
these studies in the future. Each of these steps leaves
room for optimization depending on starting mate-
rial, protein target, antibody, sequencing quality, and
more.

After sequencing, informatics plays a critical role
in these types of approaches. Appropriate algorithms
and parameters must be considered when mapping
sequencing reads and even the genomic material used
in mapping may vary. For example, RNA-seq data
can be used to extend annotated UTRs in order to
capture an accurate search space for potential binding
sites and for choosing appropriate genomic control
sequences.75 Findings of the Darnell group that 8%
of their clusters fell within 10 kb downstream of
genes suggests that they could have benefited from
additional transcriptome information.73 Once reads
have been mapped, custom algorithms are used to
distinguish significant clusters of reads from noise as
evidence of miRNA–protein binding. Each of the stud-
ies described above has applied unique approaches to
this problem, using different biological and genomic
controls for comparison in cluster finding and/or
to extract distinguishing features of binding sites.
The choice of appropriate controls in these high-
throughput and informatic approaches is still an area
of development, and remains an essential considera-
tion for reliable interpretations of data. A shortcoming
of all of these approaches is their inability to main-
tain the association of miRNA–mRNA transcripts as
a direct readout. While the search space is greatly
reduced by biochemical assays, researchers still use
computational approaches to infer these interactions
through sequence evidence indicative of miRNA bind-
ing, such as seed-complementary sites. The use of
unique experimental and computational optimizations
and controls by these groups in otherwise similar
approaches emphasizes the need for researchers to
have a clear understanding of the biological data being
analyzed, as well as the strengths and limitations of
the molecular and informatic approaches being uti-
lized. One consensus that can be drawn from these
studies is that they have provided valuable insight into
miRNA-targeting rules and biological roles. These
technologies are continuing to evolve and are being
applied to unique questions of miRNA biology. More
than ever, this combination of biochemical techniques

with high-throughput sequencing and bioinformatic
analyses emphasizes the synergy of genome-wide
approaches that have moved the study of miRNAs
forward.

miRNAS IN NORMAL AND DISEASE
NETWORKS

As miRNAs have proved to be integral components
of regulatory circuits in cells, systems biologists
are incorporating miRNAs into known networks of
protein–protein interactions, or co-regulated genes.
For example, miRNA interactions with transcription
factors have already been shown to have important
implications for the way regulatory programmes
are propagated in the cell.4,100,103,114,117,138 Several
groups have considered this interplay between
miRNAs and transcription factors to build more
accurate and informative regulatory networks.160,161

These works have brought to light the role of
miRNAs as necessary for maintaining the robustness
and stability of cellular systems when they are
challenged with environmental stimuli. This critical
connection to maintenance of homeostasis may help
to explain the implication of miRNAs in disease
systems ranging from immunological deficiencies,138

cancers and tumor metastasis,162 host–pathogen
interactions,163 and even neurological diseases such
as autism spectrum disorders164 and Alzheimer’s
disease.165 Effective diagnosis and therapies for these,
and other diseases, may need to combine knowledge
of both the protein and miRNA components of these
pathways. In disease systems where the cause of
misregulation has eluded researchers, the inclusion of
miRNAs in network models may provide additional
information about protein interconnectivity and even
reveal that these transcripts are the missing link in
interconnected pathways.166

Genetic variation within miRNAs and their tar-
get sites can also affect miRNA regulation, directly
resulting in disease phenotypes and instances of
drug resistance.167–171 In response, the term miRSNP
has been used to describe this class of func-
tional polymorphisms.172 Computational combina-
tions of polymorphism data and miRNA target pre-
dictions have speculated the potential widespread
influence of miRSNPs on human disease sus-
ceptibility, drug response, and overall phenotypic
individuality.173–176 Through adaptation of the lat-
est biochemical approaches to miRNA target finding
to this area of study, future works may be able to
identify miRSNPs with greater accuracy and thereby
explain the association of certain miRNA-affecting
polymorphisms with disease phenotypes. As has been
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proposed with protein–protein interaction networks,
the use of miRNA–protein interaction networks to
add power to genome-wide association studies may
similarly allow researchers to identify causal variants
that have otherwise remained elusive. These associa-
tions would have promising implications for the use of
miRNAs as biomarkers and oligonucleotide therapies
for disease treatment.177

CONCLUSION

The field of miRNA biology has been progressive
in its application of genome-wide approaches and
analytical methods used to extrapolate the biological
roles and regulatory circuits controlled by miRNAs.
Improved knowledge of miRNAs and their target
networks has, and will continue to, help complete
our understanding of the cellular regulatory circuitry
and shed light on the functional role of miRNAs in
diverse disease models. The implication of miRNAs
as global regulators of cell fate specification, dis-
ease pathways, and their utility as biomarkers makes

these small transcripts an essential component of
future biomedical research. In order to deduce the
specific networks controlled by individual miRNAs,
biochemical target-finding approaches will need to be
adapted to allow readout of explicit miRNA–mRNA
interactions. Individual miRNA targeting rules will
undoubtedly be elucidated through a combination of
this experimental work and computational analyses.
This information will be essential for the effective and
safe use of miRNAs as drug targets, offering an attrac-
tive opportunity to control the cooperative actions of
multiple genes involved in a single disease pathway.
The next generation of miRNA-based therapies will
be ushered in by development of improved deliverable
and stable synthetic miRNAs and miRNA inhibitors,
tools that will also be useful for the continued study
of miRNA biology. For these aspirations to be real-
ized, researchers can expect that the synergy between
molecular techniques and computational approaches,
which has been such a critical element of the miRNA
field, will be more essential than ever.
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