
247

Chapter 16

RNA-Seq Analysis of Gene Expression and Alternative 
Splicing by Double-Random Priming Strategy

Michael T. Lovci, Hai-Ri Li, Xiang-Dong Fu, and Gene W. Yeo 

Abstract

Transcriptome analysis by deep sequencing, more commonly known as RNA-seq is, becoming the 
method of choice for gene discovery and quantitative splicing detection. We published a double-random 
priming RNA-seq approach capable of generating strand-specific information [Li et al., Proc Natl Acad 
Sci USA 105:20179–20184, 2008]. Poly(A)+ RNA from a treated and an untreated sample were utilized 
to generate RNA-seq libraries that were sequenced on the Illumina GA1 analyzer. Statistical analysis of 
approximately ten million sequence reads generated from both control and treated cells suggests that this 
tag density is sufficient for quantitative analysis of gene expression. We were also able to detect a large 
fraction of reads corresponding to annotated alternative exons, with a subset of the reads matching 
known and detecting new splice junctions. In this chapter, we provide a detailed, bench-ready protocol 
for the double-random priming method and provide user-friendly templates for the curve-fitting model 
described in the paper to estimate the tag density needed for optimal detection of regulated gene expres-
sion and alternative splicing.
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We have devised a procedure based on double-random priming 
and solid phase selection to produce libraries for high-throughput 
sequencing on the Illumina Genome Analyzer (1). In order to 
sequence these libraries, P1 and P2 adapter sequences must be 
added to the ends of the DNA of interest. In this protocol, dou-
ble poly(A)-selected RNA is first primed with an oligonucleotide 
that contains a random octamer and the P1 adapter sequence. 
This first primer also carries a biotin moiety at the 5¢ end, which 
allows for the capture of extended cDNA product on streptavidin 
beads. A second random primer linked to the other sequencing 
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primer (P2) adapter sequence is next added to the cDNA bound 
to the streptavidin-coated magnetic beads. After extensive washes, 
potential P2 dimers are eliminated and the second random primed 
products are released from the beads by heat, leaving behind 
unused P1 primer, P1-extended cDNA, and potential P1 dimers. 
The released products are PCR amplified, gel purified to enrich 
for amplicons in the size range of 100–300nt, quantified, and 
subjected to sequencing (from the P1 primer side) on the 
Illumina/Solexa flow cell.

This procedure has several advantages compared to previous 
published protocols. First, it provides strand-specific information, 
as opposed to other methods that convert RNA to cDNA before 
primer addition. Second, sequencing a short region right after the 
first random priming reaction avoids cDNA artifacts resulting 
from extension of the hairpins formed after the first strand syn-
thesis (2), which may account for artifactual “antisense tran-
scripts” seen in previous large-scale mRNA sequencing and tiling 
analysis (3,4). Third, the built-in random primer region retains 
the molecular memory for originally primed products, allowing 
computational elimination of sequenced reads amplified by PCR, 
because all PCR products from the same initial amplicon will have 
identical sequences in the randomized region. This strategy per-
mits the use of PCR amplification without distorting the repre-
sentation of the transcriptome, a feature critical for quantitative 
analysis on a limited population of cells.

 1. RNAbee (amsbio).

 1.  RT buffer (Invitrogen): First-strand buffer (5×), DTT 
(0.1 M), RNase inhibitor, Superscript III reverse tran-
scriptase, 10 mM dNTPs, and RNAase-free water 
(Invitrogen Superscript III kit).

 2. QIAquick PCR purification kit (Qiagen):
(a) Qiagen PCR purification buffer.
(b) Qiagen purification columns.
(c) Qiagen binding buffer.
(d) Qiagen wash buffer.
(e) Qiagen elution buffer: 10 mM Tris–HCl, pH 8.5.

 3. NaOH (0.1 M).
 4. 10 mM dNTPs.
 5. 130 mM ddNTPs.

2.  Materials
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 6.  Adaptor 1: Biotinylated random oligo with Solexa 
Adaptor P1: (Bio-P1-N(8)) OR biotinylated oligo-dT 
with Solexa Adaptor P1 (Bio-P1-poly(T)+), 50 mM (see 
Note 3).

 7. Terminal transferase (NEB).
 8. 10× Terminal transferase buffer (NEB).
 9. EDTA.
10.  Beads: Streptavidin-coated magnetic beads (SeraMag 

beads of Seradyne or Dynal beads).
11. Magnetic stand (Dynal).
12.  Adaptor 2: Random oligo-linked Solexa Adaptor P2 

(P2-N(8)) (100 mM).
13.  PCR buffer: 10× standard Taq DNA polymerase buffer 

(NEB).
14.  Wash buffer: 10 mM Tris-HCl, pH 7.5, 1 mM EDTA, 

0.1% Tween-80 or Triton-X 100.
15. Taq DNA polymerase (NEB).
16. Agarose (NuSieve).
17. PicoGreen (Invitrogen).

The bench-ready protocol is described as follows:

 1. Add 1 ml of Adaptor 1 (reagent 6) to 10 pg–5 mg of total RNA, 
1 ml of dNTP mix, and RNase-free water to 13 ml per reaction.

 2. Heat the mixture to 65°C for 5 min and incubate on ice for 
at least 1 min.

 3. Add 4 ml of RT buffer.
 4. Incubate at 50°C for 30–60 min.
 5. Add deionized water to a total volume of 100 ml and inacti-

vate the reaction by heating at 70°C for 15 min.
 6. To remove the free biotin-labeled oligos, add 500 ml of 

Qiagen PCR purification buffer before transferring the 
 mixture to a Qiagen purification column. Wash the Qiagen 
column once with the binding buffer and twice with the 
wash buffer. Elute with 50 ml of Qiagen elution buffer to a 
clean tube.

 1. Transfer the eluate to PCR tubes. Add 15 ml of  terminal 
 transferase buffer, 3 ml of ddNTP mix and DI water to make 
up the volume to 150 ml. Add 2 ml of terminal transferase 
enzyme. Incubate at 37°C for 1 h (see Note 1).

3. Methods
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 2. Add 20 mM of EDTA.
 3. Add 5 ml of beads and incubate the mixture at room tempera-

ture for 20 min.

Collect the beads with a magnetic stand and discard the 
supernatant (see Note 4).

Remove the tubes containing beads from the magnetic 
stand. Wash the beads with 100 ml of NaOH solution 
by drawing beads to oneside of the tube then the other 
with the magnetic stand (see Note 4). Incubate for 5 min 
at room temperature.

 4. Collect the beads with the magnetic stand and wash with DI 
water twice, removing the tubes from the magnetic stand 
between washes to wash completely.

 5. Off the magnetic stand, add 1 ml of Adaptor 2 to the beads, 
5 ml of PCR buffer, 1 ml of dNTPs, add DI water to make up 
the volume to 49 ml. Add 1 ml of Taq DNA polymerase 
(5 U).

 6. Incubate the tubes at 25°C for 1 h. Heat to 72°C for 30 s and 
then raise the temperature to 75°C for 5 min. Add 10 mM of 
EDTA to to stop the polymerization reaction.

 7. Collect the beads and wash twice with 150 ml of wash buffer, 
removing the tubes from magnetic stand during washes.

 8. On the stand, add 20 ml of water and heat for 5 min at 95°C. 
Collect the extended DNA in the supernatant.

 9. Amplify the extended DNA with PCR using Solexa Adaptors 
1 and 2 as primers (without poly(T)+ or N(8)).

 10. Run the library on an agarose gel and excise the band 
 corresponding to 75–125 nt. Gel extract the band to elute 
DNA library.

 11. Quantify DNA using PicoGreen or quantitative PCR prior 
to sequencing. A typical sequencing run uses 10–20 ng of 
DNA.

In order to utilize RNA-seq reads to measure gene expression 
quantitatively, it is imperative to first define our concept of genes. 
To that end, we have developed detailed annotations of gene 
structures based on publicly available annotations downloaded 
from the University of California, Santa Cruz (UCSC) (5). We 
have also generated alignable sequence databases that can be used 
with data generated from high-throughput sequencing and for 
the purpose of aligning sequencing reads to spliced mRNA tran-
scripts. Basic notes on the acquisition and processing of data such 
as these are outlined here. Please review our previously published 
work for more detailed information (6).

3.2. Transcript 
Databases for Gene 
Expression and 
Alternative Splicing 
Detection
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Genome sequences of human (hg17) and annotation for  
protein-coding genes were obtained from the UCSC. The lists 
of known human genes (knownGene containing 43,401 
entries) and knownisoforms (knownIsoforms containing 43,286 
entries in 21,397 unique isoform clusters) with annotated exon 
 alignments to human hg17 genomic sequence were processed 
as follows. Knowngenes that were mapped to >1 isoform  
clusters were discarded. All mRNAs aligned to the human 
genome that were >300 bases long were clustered together with 
the knownisoforms. For the purposes of measuring differential 
gene expression, all genes were considered. For the purposes of 
inferring alternative splicing, genes containing <3 exons were 
not considered. Exons with canonical splice signals (GT-AG, 
AT-AC, and GC-AG) were retained, resulting in a total of 
213,736 exons. Of these, 92% of all exons were constitutive 
exons, 7% had evidence of exon skipping, 1% of exons were 
mutually exclusive alternative events, 3% of exons had alterna-
tive 3¢ splice sites, and 2% exons had alternative 5¢ splice sites 
(Fig. 1). A total of 2.7 million spliced ESTs were mapped onto 
the 17,478 high-quality gene clusters to identify alternative 
splicing. To eliminate redundancies in this analysis, final anno-
tated gene regions were clustered together so that any overlap-
ping portion of these databases was defined by a single genomic 
position.

3.2.1. Building  
an Aggregate Gene  
Model (Fig. 1)
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Fig. 1. Cartoon depicting construction of an aggregate gene model. Exons are depicted as boxes labeled as internal (I), 
first (F), or last (L). Region classifications are listed at the bottom of the schematic. Classifications of splicing were defined 
as follows: overlap (OV), skipped exons (SE), alternative 5′/3′ exons (A5E/3E), constitutive exons (CE), mutually skipped 
exons (MXE), and intron retentions (IRE).
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Exons with canonical splice signals (GT-AG, AT-AC, and GC-AG) 
were used to create an exon-junction database (EJDB). For each 
protein-coding gene, the 35 bases at the 3¢ end of each exon were 
concatenated with the 35 bases at the 5¢ end of the downstream 
exon. This was repeated, joining every exon of a gene to every 
exon downstream. This approach produced 1,929,065 theoreti-
cal splicing junctions. An equal number of “impossible” junctions 
were generated by joining the 35-base exon-junction sequences 
in reverse order.

MosaikAligner (7), using a maximum of 2 mismatches over 95% 
alignment of the tag (34nt) and a hash size of 15, was used to 
align reads to the human genome (hg17). However, since the 
publication of this work, several new alignment algorithms have 
been made available that offer other options for this step (such as 
QPalma (8) Bowtie (9) or RazerS (10)). To determine the num-
ber of reads contained within protein-coding genes, promoter, 
and intergenic regions, we arbitrarily defined promoter regions as 
regions 3-kb upstream of the transcriptional start site of the gene, 
and intergenic regions as unannotated regions in the genome.

Alignments to our EJDB were also done using the same 
 alignment algorithm and mapping requirements, with the added 
requirement that reads map at least 4 nt across the exon–exon 
junction.

Differentially expressed transcripts were identified by enumerat-
ing the number of reads that mapped within the spliced mRNA 
transcript in untreated and hormone-treated cells, using the total 
number of reads mapped to exons in each condition as a basis for 
determining significance by the c2 statistic.

The c2 statistic was calculated for genes with ³ 5 reads in each 
experimental condition, and the value of the c2 statistic was com-
puted using a 2 × 2 square with the reads within a particular gene 
in both conditions on the top row and the reads not within that 
gene in both conditions on the bottom row.

After the number of reads mapped in each condition and the 
statistical significance are determined, each gene can be plotted as 
a scatter plot as in Fig. 2 for visualization purposes.

Alternative splicing was detected by using reads mapped across 
exon junctions. We were able to detect both annotated and novel 
splice junctions. The type of exon–exon junction (i.e., constitu-
tive or alternative) was determined based on our aggregate gene 
model (see above). False-discovery rate (FDR) was assessed by 
mapping reads to a set of “impossible” junctions that were cre-
ated by reversing the order of exons in the EJDB (e.g., if exons 1 
and 2 of a particular gene that are in the EJDB are joined 1 → 2, 

3.2.2. Building  
an Exon-Junction 
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3.3.1.  Alignment
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Expression
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the impossible version of this would be the same exons joined in 
the reverse order, 2 → 1).

To establish the depth of sequencing required to examine several 
transcriptome features, we devised a method to predict not only 
the number of reads required to analyze a particular feature, but 
also the number of features observable at that sequencing depth.
Reads were randomly sampled into subsets representing 10, 20%, 
etc., of the total number of sequence reads available using custom 
Perl scripts. These were aligned as described above and the num-
ber of features detected was assessed. To determine the number 
of sequence reads required to reach a user-defined threshold for 
saturation, the percentage change in discovering additional fea-
tures was determined as follows:

( ) ,=T n sn  

 

( ) ( 1)
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 − −=  − 

F n F n
C n

F n  
where T (n) is the number of reads, s is the sampling size (in our 
case, two million reads), n is a constant multiplier, C (n) is the 
empirical change in number of features detected, and F (n) is the 
number of empirical features detected at n. A scatter plot of C (n) 
to T (n) was fitted with a power curve of the form c (n) = a × T (n)b 
and an exponential curve of the form c (n) = aebT (n), where c (n) is 
the change estimated by the curve fitting.

3.4. Power Curve 
Analysis
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Fig. 2. Digital analysis of androgen-regulated gene expression in LNCaP cells. Scatter 
plot of gene expression in mock-treated and DHT-induced cells. Differential expressed 
genes were (in light gray ) based on c2 analysis (P < 0.01).
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The equation that had the best fit, indicated by r2, was used 
to extrapolate the tag density required to achieve a defined change 
in the number of features detected. The number of estimated 
features was calculated by

 
( ) ( 1) ( 1) ( ),

=

= − + − ×∑
n

i m

f n f i f i c i
 

where m is user defined (in our case, m = 6). This will compute 
the predicted number of features observable based on observed 
change in feature detection, extrapolated from an area in the mid-
dle of the curve. Fig. 3 depicts one such fitted curve.

These calculations can be done easily using the “Data Analysis” 
ToolPak for Microsoft Excel. An example worksheet that calcu-
lates features using data from three independent samplings (labeled 
X, Y, and Z) can be downloaded from http://yeolab.ucsd.edu/
yeolab/Papers_files/EXAMPLE.xls

 1. Ensure that the beads do not dry out throughout the 
protocol.

 2. Ensure that the areas used to perform experiments with RNA 
are free of RNAase contaminants.

4.  Notes
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Fig. 3. Curve fitting the change in the number of exons and splice junctions detected 
against increasing tag densities. Dashed line indicates exponential curve; solid line indi-
cates power curve. Decline in the rate of identifying additional exons as a function of 
increasing tag density.

http://gonzo.ucsd.edu/yeolab/PUBLIC_RESOURCES/EXAMPLE.xls
http://gonzo.ucsd.edu/yeolab/PUBLIC_RESOURCES/EXAMPLE.xls


255RNA-Seq Analysis of Gene Expression and Alternative Splicing

 3. Check the quality of adaptors by running them on an agarose 
gel (there should be one band) and be sure that they are 
PAGE purified.

 4. When washing beads on the magnetic stand, it is useful to 
spin the tubes in the stand to get them to transfer from one 
side of the tube to the other; the beads tend to stick to the 
wall of the tube and this makes washes faster and more 
thorough.
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