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During microbial infection, responding T lymphocytes give rise to 
two distinct classes of cellular progeny: effector cells that provide 
acute host defense, and long-lived memory cells that provide dura-
ble immunity1. Terminally differentiated, short-lived effector T cells 
(TSLE cells) can be identified phenotypically by their high expression 
of the lectin-like receptor KLRG1 and low expression of the receptor 
for interleukin 7 (IL-7R)2. At least two distinct subsets of long-lived 
memory cells, central memory T cells (TCM cells) and effector memory 
T cells (TEM cells), have been described; these can be distinguished on 
the basis of their proliferative capacity, cytotoxicity, anatomic locali-
zation and expression of certain homing and chemokine receptors, 
including L-selectin (CD62L) and CCR7 (refs. 3,4).

Published studies using single-cell adoptive transfer and ‘genetic 
barcoding’ approaches5,6 have demonstrated that a single naive CD8+ 
T lymphocyte can give rise to cells with more than one fate and, 
notably, is able to generate all of the diverse cellular fates necessary 
for an immune response. The process by which a single activated  
T lymphocyte yields effector- and memory-fated progeny and the 
time at which those differentiation pathways begin to diverge, how-
ever, remain unresolved. One possibility is that the progeny of an acti-
vated naive CD8+ T lymphocyte progress along a linear differentiation 
path, initially becoming effector cells, with a subset of those cells later 
acquiring the memory fate1,7,8. An alternative possibility is that the 
first CD8+ T cell division in vivo is asymmetric9,10 and thus enables 
lymphocyte fates to diverge early during an immune response owing 
to unequal inheritance of certain determinants, such as the receptor 
for interferon-γ (IFN-γ) and the transcription factor T-bet.

Tracing individual lymphocytes sequentially as they differentiate in 
vivo might distinguish whether lymphocytes progress along a linear dif-
ferentiation pathway1,7,8 or diverge early during an immune response. 
While genomic profiling studies have begun to elucidate the tran-
scriptional networks that control lymphocyte fate specification11–13,  
such studies have been based on analyses of bulk cellular populations, 
which makes it impossible to discern cell-fate ‘decisions’ made by indi-
vidual T cells. Technological advances that have coupled microfluidics 
technologies with high-throughput quantitative RT-PCR analyses have 
enabled detailed analyses of cell-fate ‘decisions’ during the develop-
ment of Caenorhabditis elegans, induced stem-cell reprogramming 
and cancer biology14–17. Here we used single-cell gene-expression 
profiling to investigate the ontogeny of effector and memory CD8+  
T lymphocytes during microbial infection in vivo and found evidence 
of heterogeneity in gene expression within individual lymphocytes 
early after the initiation of an adaptive immune response.

RESULTS
Single-cell gene-expression analyses of CD8+ T cells
To delineate the hierarchy and mechanism of CD8+ T cell differen-
tiation during an adaptive immune response at the single-cell level, 
we used an experimental system that allowed us to investigate the 
gene expression of individual CD8+ T lymphocytes throughout the 
course of a microbial infection in vivo. We adoptively transferred 
OT-I CD8+ T cells, which have transgenic expression of T cell anti-
gen receptor that recognizes a specific ovalbumin (OVA) epitope, 
into wild-type recipient mice. We then infected the recipient mice 
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intravenously 24 h later with recombinant Listeria monocytogenes 
bacteria expressing ovalbumin (Lm-OVA) and isolated CD8+  
T cells throughout the course of infection for single-cell analysis (Fig. 1).  
In addition, we selected for analysis terminally differentiated TSLE 
cells (KLRG1hiIL-7Rlo)2, putative memory precursor T cells (TMP 
cells; KLRG1loIL-7Rhi)2, TCM cells (CD44hiCD62Lhi) and TEM cells 
(CD44hiCD62Llo)3,4 (Fig. 1).

We used Fluidigm 96.96 Dynamic Arrays for quantitative real-
time PCR analysis, which allowed simultaneous measurement of  
the expression of 96 genes in 96 individual cells (Supplementary Fig. 1a).  
Among the 94 genes (Table 1 and Supplementary Table 1) we selected 
for analysis were those encoding transcriptional regulators reported 
to influence CD8+ T lymphocyte differentiation18–25; cytokines, 
chemokines, and their receptors19; and molecules associated with 
tissue homing and survival19. After excluding failed reactions, we 
retained expression data from 1,300 single cells for in-depth analyses 
(Supplementary Fig. 1b). Because expression of ‘housekeeping’ genes 
has been shown to vary substantially across cell types and states of dif-
ferentiation26, we used the expression of each gene of interest without 
normalization for all our analyses here.

We used principal-component analysis (PCA) to visualize the 
expression data globally. PCA is an unsupervised dimensionality-
reduction method that we used to project the data into two dimen-
sions by its coordinates in the first two principal components (PC1 
and PC2) that account for the largest variations in the data. Those 
principal components were linear combinations of the expression data 
for the 94 original genes. PCA revealed that naive cells, TSLE cells, TEM 
cells and TCM cells clustered distinctly (Fig. 2a). Expression of Sell and 
Tcf7, which encode the trafficking molecule CD62L and the transcrip-
tion factor TCF-1, respectively, distinguished naive cells from TSLE 
cells (Fig. 2a), consistent with published findings2,4. Although TSLE 
cells formed a distinct cluster, these cells were projected closest to TEM 
cells (Fig. 2a), which suggested that related gene-expression profiles 
may underlie some of their functional similarities, such as cytotoxicity 
and the secretion of proinflammatory cytokines27. That clustering was 
driven by expression of Zeb2, which encodes a transcription factor 
expressed in TSLE cells12. In addition, TEM cells and TCM cells occu-
pied distinct clusters, with higher expression of Tcf7, Il2rb, Il7r, Cxcr3 
and Sell mRNA in TCM cells and higher expression of Zeb2 mRNA 
in TEM cells accounting for the variance between these memory cell 
populations. We confirmed at the protein level some of the dispari-
ties observed at the transcriptional level (Fig. 2b), which supported 
our finding that TCM cells and TEM cells were molecularly distinct. 
The higher expression of Il7r and Tcf7, which encode regulators of 
T lymphocyte survival and longevity25,28, that we observed in TCM 
cells may underlie the superior ability of these cells to persist in vivo29. 
Putative TMP cells did not form a distinct cluster but overlapped TSLE 
cells, TEM cells and TCM cells (Fig. 2c). These results suggested that 

putative TMP cells are molecularly heterogeneous, which raised the 
possibility that this population may not represent memory precursor 
cells but instead may consist of ‘mature’ memory cells and terminally 
differentiated effector cells. Together these findings suggested that 
TSLE cells, TCM cells and TEM cells exhibited similar gene-expression 
profiles at the single-cell level, but putative TMP cells did not.

Molecular heterogeneity at the single-cell level
To assess whether single responding CD8+ T cells were molecularly 
heterogenous early after infection, we analyzed the gene-expression 
profiles of individual CD8+ T cells (Fig. 3a) isolated throughout the 
course of the infection described above (Fig. 1). PCA revealed greater 
heterogeneity among cells isolated early after infection (division 1 and 
day 3) than among cells isolated at later time points (day 5 and day 7; 
TSLE, TCM, and TEM cells). The first two principal components cap-
tured 17% of the variance in our data set (Fig. 3), slightly lower than 
that in published results15; this was probably a reflection of a higher 
degree of heterogeneity in lymphocytes during differentiation and 
the greater number of genes analyzed in our study. In agreement with 
our findings obtained by PCA, an alternative ‘unsupervised’ method 
(t-distributed stochastic neighbor-embedding analysis30) produced 
similar results (Supplementary Fig. 2). To determine whether the het-
erogeneity observed with data from single cells could be recapitulated 
with data from bulk cells, we formally compared the analyses with 
data derived from single populations versus those derived from bulk 
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Figure 1 Gating strategy and experimental approach. Unlabeled or 
CFSE-labeled CD45.1+ OT-I CD8+ T cells were adoptively transferred 
intravenously into CD45.2+ recipient mice, which were then left 
uninfected (naive; CD8+CD45.1+CD44loCD62Lhi) or infected with Lm-OVA 
at 24 h after cell transfer. CD8+ T cell subsets were isolated at various 
times after infection (division 1 (CD8+CD45.1+CD44hi cells within the 
second brightest CFSE peak); days 3, 5, and 7 after infection; TSLE cells 
at day 7 (CD8+CD45.1+CD44hiKLRG1hiIL-7Rlo); putative TMP cells at day 
7 (CD8+CD45.1+CD44hiKLRG1loIL-7Rhi); TCM cells at day 45 (CD8+CD45.
1+CD44hiCD62Lhi); and TEM cells at day 45 (CD8+CD45.1+CD44hiCD62Ll

o)), followed by single-cell gene-expression analysis and data analysis with 
PCA and JSD (unsupervised) and binary classifier and HMM (supervised). 
Numbers adjacent to outlined areas or in quadrants indicate percent cells 
in each. Data are representative of three experiments. 
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populations (Fig. 3a). We found that the heterogeneity we observed 
at the single-cell level in putative TMP cells and cells isolated early 
after infection was not apparent in the bulk analysis (Fig. 3a); this 
illustrated the power and necessity of using a single-cell approach.

To further evaluate the degree of heterogeneity within and between 
cell populations at each time point, which was not previously possible 
with bulk analysis, we applied the Jensen-Shannon divergence (JSD) 
metric, a nonparametric, model-free measure of similarity between 
two empirical probability distributions. In general, the intrapopula-
tion JSD metric was lowest for naive cells and highest for cells iso-
lated early after infection (Fig. 3b and Supplementary Fig. 3a). We 
observed that the intrapopulation JSD metric decreased as a function 
of time after infection, with the notable exception of putative TMP 
cells (Fig. 3b). Those cells exhibited a high degree of intrapopulation 
divergence, consistent with the apparent heterogeneity of those cells 
by PCA (Fig. 3a). Pairwise comparison of JSD metrics for all cell 
populations (naive cells, cells at division 1, cells at days 3, 5 and 7 after 
infection, and TMP, TSLE, TCM and TEM cells) yielded similar results, 
with the greatest divergence between cells isolated early after infection 
versus those isolated late after infection (Fig. 3b and Supplementary 
Fig. 3a). Notably, the interpopulation JSD metric was not affected by 
group size (Supplementary Fig. 3b). Together these results demon-
strated that CD8+ T lymphocytes responding to a microbe exhibited 
substantial molecular heterogeneity at the single-cell level early after 
infection and that this heterogeneity diminished with time.

Distinct transcriptional signatures early after infection
We hypothesized that the heterogeneity observed for lymphocytes early 
after infection might have reflected distinct gene-expression patterns 

that are predictive of more differentiated cells. We reasoned that ‘super-
vised’ classifiers ‘trained’ on relatively well-defined, differentiated cel-
lular fates, such as sorted TCM cells and TSLE cells, could be used to 
assess whether cells isolated early after infection might be fated toward 
specific CD8+ T lymphocyte subsets. We chose to use ‘boosted decision 
trees’31 rather than other classification frameworks with similar per-
formance characteristics because the ‘learned trees’ are easily interpret-
able. A ‘decision tree’ built from the data consisted of several predictive 
rules that compared the expression of Ptprc, Sell and Ccl5 to thresholds 
‘learned’ from that data to ‘decide’ whether a cell was more like a TCM 
cell or a TSLE cell (Supplementary Fig. 4a). Ensembles of ‘decision trees’ 
were ‘trained’ with the RobustBoost algorithm32 to generate a binary 
classifier that achieved a misclassification error of approximately 4% 
in ‘leave-one-out’ cross-validation, which was split evenly when the 
classifier was distinguishing between TCM cells and TSLE cells (Fig. 4a 
and Supplementary Fig. 4b). The classifier revealed that Sell and Il7r 
were among the most predictive genes whose high expression accurately 
described TCM cells, whereas the lack of expression of Sell and Il7r, along 
with high expression of Zeb2, defined TSLE cells (Fig. 4b). Application 
of the classifier to cells isolated at days 5 and 7 after infection revealed 
that 49% and 57%, respectively, of total CD8+ T cells at these time points 
were more like TSLE cells than TCM cells (Fig. 4c), consistent with the 
expected frequency of TSLE cells at days 5 and 7 after infection2.

We next sought to determine whether the classifier could discern 
the fates of responding lymphocytes isolated early during an immune 
response. It has been suggested that asymmetric division of CD8+ 
T lymphocytes yields daughter cells proximal to the immunological 
synapse (‘proximal daughter cells’) and distal to the immunological 
synapse (‘distal daughter cells’) that adopt different fates6, which raises 

Table 1 Functional classification of gene targets
Class Gene

Apoptosis Bnip2, Bnip3l, Casp3, Casp9, Cflar, Pdcd1
Cytokine or chemokine 

receptor
Ccr5, Ccr6, Ccr7, Cxcr3, Ifngr1, Ifnar1, Il2ra, Il2rb, 

Il7r, Klrc1, Klrg1, Tnfrsf1, Tnfrsf9
Cytokine, chemokine, 

granzyme
Ccl3, Ccl4, Ccl5, Cxcl10, Gzmb, Ifng, Il2, Il3, Lif, 

Xcl1
Housekeeping Actb, Gapdh, Rn18s, Rpl35
Polarity-proteasome Prkcz, Psmb1, Psmb7
Signaling, proliferation, 

self-renewal
Bag2, Bmi1, Bmp2, Cd28, Cd4, Cd44, Cd69, 

Cd8a, Grap2, Hk2, Lag3, Lgals1, Mapk3, Mapk8, 
Mapk14, Mela, Mtor, Myc, Ptprc, RelA, Sema7a, 
Serpinb6b, Serpinb9, Setd7, Sell, Thy1

Transcription factor Atf1, Bcl11b, Bcl6, Bhlhe40, Eomes, Foxo1, Foxo3, 
Foxp1, Foxp3, Gata3, Hopx, Id2, Id3, Irf4, Irf8, 
Klf2, Lef1, Nfatc1, Nfatc2, Prdm1, Rel, Runx1, 
Runx2, Stat1, Stat4, Tbx21, Tcf3, Tcf7, Tcf12, Tox, 
Zeb2, Zfp281

Functional classification of the products of 94 selected gene targets.
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Figure 2 Effector and memory CD8+ T lymphocyte subsets are molecularly 
distinct on a single-cell level. (a) Projections of PC1 and PC2 (bottom left) 
for single-cell gene-expression data derived from individual lymphocytes 
from populations of naive, TSLE, TCM and TEM cells (key). Each symbol 
represents an individual cell; each vector emanating from the origin 
represents an individual gene. PC1 and PC2 account for 11% and 9% 
of the variance, respectively. (b) Expression of CD8 (encoded by Cd8a), 
TCF-1 (encoded by Tcf7), CD62L (encoded by Sell) and IL-7R (encoded 
by Il7r) in TCM and TEM cells, assessed by flow cytometry and presented as 
mean fluorescence intensity (MFI). Each symbol represents an individual 
mouse; small horizontal lines indicate the mean (± s.e.m.). *P < 0.05 
and **P < 0.01 (Kolmogorov-Smirnov test). (c) PC projections as in a of 
TMP, TSLE, TCM and TEM cells (key). PC1 and PC2 account for 11% and 
6% of the variance, respectively. Data are representative of at least two 
experiments (a,c) or two experiments with at least three mice in each (b).
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the possibility that such cells might already exhibit distinct gene-
expression patterns that are predictive of their eventual fates as early 
as the first cell division. To assess this possibility, we sorted putative 
proximal and distal daughter cells, which can be distinguished by their 
relative abundance of CD8 and CD11a9, and analyzed the sorted cells. 
The classifier revealed that most proximal daughter cells more closely 
resembled TSLE cells, while most distal daughter cells more closely 
resembled TCM cells (Fig. 4c), which suggested that these cells may 
indeed adopt different fates.

As further evidence that proximal and distal daughter cells display 
unique molecular patterns that might drive their distinct fates, we 
observed that these cells exhibited a pronounced disparity in the expres-
sion of genes associated with the effector fate or memory fate (Fig. 4d). 
Certain genes associated with the memory fate in CD8+ T cells, includ-
ing Eomes, Sell, Il7r, Il2rb, Tcf7, Id3 and Bcl6 (refs. 18,19,21,24,25), 
had higher expression in distal daughter cells. Conversely, we detected 
certain genes associated with terminally differentiated effector cells, 
such as Tbx21, Prdm1 and Grzmb19,20,22, only in proximal, not distal, 
daughter cells. While it remains possible that the gene-expression pat-
terns of early lymphocytes might change as the cells continue to dif-
ferentiate, together these results were indicative of distinct molecular 
patterns, suggestive of a possible predisposition toward different fates, 
in cells that may have undergone an asymmetric division in vivo.

Temporal expression of determinants of CD8+ T cell fates
Having determined that the gene-expression patterns of less-
 differentiated cells could be used to predict their eventual fates, we 
next sought to develop a simple generative model for the fate specifi-
cation of CD8+ T lymphocytes that would capture key genes encod-
ing molecules involved in each step of the differentiation pathway of 
an individual naive cell. In contrast to the classifiers we ‘trained’ on 
cells purified by sorting, to discriminate between different cellular 
fates (TCM versus TSLE), we used a hidden Markov model (HMM) 
‘trained’ on lymphocytes representative of intermediate states of dif-
ferentiation (division 1, day 3, day 5) between the naive state and the 
differentiated fates (Fig. 5a). HMMs have been applied to sequential 
and time-series analyses in diverse fields and have been particularly 
useful for modeling hidden, unobserved states during biological 
processes33,34. HMMs not only capture the static expression profiles 
of subpopulations at a particular stage but also can detect dynamic 
expression changes responsible for the transitions between them. To 
construct a temporal paradigm of T lymphocyte fate specification  
in vivo, we first defined six linear HMMs and twelve divergent HMMs 
(Supplementary Fig. 4c) that represented possible hypothetical states 

(such as pre-TSLE or pre-memory) through which an individual naive 
T lymphocyte could transition before differentiating into any of three 
observed fates (TSLE, TCM and TEM). To evaluate each HMM, we ana-
lyzed all possible paths for each individual cell (Supplementary Fig. 4c).  
Incorporating the single-cell measurements obtained serially for 
CD8+ T lymphocytes differentiating in vivo, we calculated the likeli-
hood of each of the possible differentiation paths for each defined 
linear or divergent HMM (Supplementary Fig. 4c). To determine 
both the significance and robustness of each HMM, we randomly 
varied the initial values of the transition matrices by 10% and com-
puted the ‘log likelihood’ for each iteration. Our results showed that 
the divergent models generally outperformed the linear models, and 
we identified an early divergent model as the most likely pathway  
(Fig. 5b and Supplementary Fig. 4d). We further evaluated the per-
formance of that final model by randomly ordering the population 
labels of the cells as well as the associated expression values. Notably, 
the likelihood of the best model was significantly higher than the like-
lihood for shuffled data (P = 0.00034), which showed that the model 
robustly indicated that an activated CD8+ T lymphocyte gave rise to 
cells that transitioned through either a hypothetical pre-TSLE state or 
pre-memory state. Pre-TSLE cells could undergo further differentia-
tion to acquire the TSLE fate, whereas pre-memory cells could further 
diverge to give rise to TCM cells or TEM cells. Together these findings 
suggested that an early divergent model may be the most likely path-
way that underlies lymphocyte fate specification in vivo.

We analyzed the changes in expression of all 94 genes noted above 
(Table 1) during each of those five unique transitions: naive to pre-
TSLE, naive to pre-memory, pre-TSLE to TSLE, pre-memory to TCM, 
and pre-memory to TEM (Fig. 5b,c and Supplementary Fig. 5). This 
analysis revealed both shared and unique molecular features of each 
transition. The naive–to–pre-TSLE and naive–to–pre-memory transi-
tions, for example, were both associated with increased expression of 
Lgals1. Notably, however, the naive–to–pre-TSLE transition was asso-
ciated with higher expression of Il2ra and lower expression of Cxcr3, 
Sell and Tcf7 than that of the naive–to–pre-memory transition, which 
raised the possibility that these genes might encode molecules that 
influence whether a cell proceeds along the pathway toward terminal  
differentiation or self-renewal. The pre-memory–to–TCM and  
pre-memory–to–TEM transitions were both characterized by increased 
expression of Ccl5 and decreased expression of Foxo1 and Cxcr3. 
However, the pre-memory–to–TCM transition was uniquely associ-
ated with increased expression of Tcf7, Il7r and Sell. In contrast, the 
pre-TSLE–to–TSLE transition was associated with increased expression 
of Ccl5 and decreased expression of Il2ra, Il2rb, and Foxo1. Together 
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Figure 3 Early heterogeneity of gene expression in 
individual CD8+ T lymphocytes during an immune 
response. (a) PC projections (as in Fig. 2a)  
of single-cell gene expression in mice infected 
as described above (Fig. 1), for data derived 
from individual lymphocytes among populations 
of naive cells, cells at division 1 (Div 1) or at 
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(Intra-) and interpopulation (Inter-) JSD metrics of 
mean gene expression within and between CD8+ 
T cell populations (defined as in a). Data are 
representative of at least two experiments.
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these results revealed the temporal expression patterns of key genes 
encoding molecules that influence the fates of CD8+ T lymphocytes 
responding to microbial infection in vivo.

IL-2Ra asymmetry is associated with distinct cellular fates
We found the prediction, raised by our temporal model, that IL-2Rα 
might represent an early molecular switch that promotes the pathway  

toward terminal differentiation intriguing, given published work 
suggesting a role for IL-2 signaling in the differentiation of CD8+ T 
lymphocytes35–39. To determine how early we could detect a possible 
disparity in IL2ra expression in lineages destined for an effector fate 
versus those destined for a memory fate, we used flow cytometry to 
examine the expression of IL-2Rα in CD8+ T cells that had under-
gone their first division in vivo in response to microbial infection. 
We observed that differences in the abundance of IL-2Rα on the cell 
surface distinguished two populations of first daughter cells (Fig. 6a)  
and that IL-2Rα abundance was inversely correlated with CD62L 
expression (Fig. 6a). Furthermore, cells with higher expression of 
IL-2Rα also exhibited increased production of IFN-γ and granzyme 
B, characteristic of effector cells (Fig. 6b).

To test the hypothesis that the amount of IL-2Rα expression 
conferred a distinct predisposition toward the effector lineage or 
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or TSLE cell purified by sorting; colors indicate 
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(c) Classifier analysis of individual CD8+ T cells 
(thin stacked horizontal blue bars) from various 
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blue bars) from the most TCM-like cells to most 
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memory lineage, we sorted CD62LloIL-2Rαhi or CD62LhiIL-2Rαlo 
cells that had undergone their first division in vivo. We then adop-
tively transferred those cells into recipient wild-type mice that we 
had infected 48 h before with Lm-OVA. We tracked the progeny 
of adoptively transferred cells at multiple time points throughout 
the course of the primary response and found that the progeny of 
both CD62LloIL-2Rαhi cells and CD62LhiIL-2Rαlo cells were detect-
able after infection (Supplementary Fig. 6). Notably, however, the 
progeny of the transferred IL-2Rαlo cells exhibited a fourfold greater 
capacity to give rise to TCM cells than did the progeny of transferred 
IL-2Rαhi cells (Fig. 6c). To confirm functionally that those cells were 
indeed memory lymphocytes, we assessed their ability to respond 
to microbial rechallenge. We rechallenged the recipient mice with 
Lm-OVA at day 50 after primary infection and observed tenfold 
more population expansion by the progeny of transferred CD8+ 
T cells in recipient mice that had received CD62LhiIL-2Rαlo cells 
than in mice that had received CD62LloIL-2Rαhi cells (Fig. 6d), 
which suggested that these cells had different abilities to give rise to  
memory lymphocytes.

Because certain cytokine and immunological receptors can 
undergo unequal partitioning during cell division9, we hypothesized 
that asymmetric segregation of IL-2Rα and CD62L during mitosis 
might provide a mechanism underlying their difference in abundance 
on daughter cells that had undergone their first division in vivo.  
We used an experimental system that has allowed analysis of T cells 
preparing for their first division in response to a microbe9. We labeled 
OT-I CD8+ T cells with the division-tracking fluorescent dye CFSE 
and adoptively transferred those cells into recipient mice that we had 
infected 24 h before with Lm-OVA. We isolated undivided donor 
CD8+ T cells by flow cytometry at 36 h after transfer and examined 
them by confocal microscopy. We observed that IL-2Rα and CD62L 
exhibited pronounced asymmetric distribution in cells that were 
preparing for division (asymmetric segregation of IL-2Rα in 60% 
of cells (n = 96) and of CD62L in 62% of cells (n = 74), respectively. 
Fig. 6e). Together these results suggested that the asymmetric seg-
regation of IL-2Rα and CD62L during the first division of a CD8+ T 

lymphocyte in vivo may influence the transcriptional profiles of the 
nascent daughter cells and their eventual fates.

DISCUSSION
Advances in high-throughput single-cell gene-expression profil-
ing have enabled the use of this technique in such diverse fields as 
embryonic development, hematopoiesis, stem cell reprogramming 
and cancer biology14–17. Those advances, coupled with computa-
tional modeling approaches, enabled us to investigate, on a level of 
molecular detail not previously possible, the ontogeny of effector and 
memory lymphocytes during microbial infection in vivo. We found 
evidence of considerable heterogeneity in gene expression among 
individual CD8+ T lymphocytes early after the initiation of microbial 
infection. Notably, we demonstrated that such heterogeneity could 
not be identified by traditional bulk-population analyses and that 
many of our computational analyses here, including JSD, classifier 
and HMM, were possible only with data derived from single cells. 
Our observations provide a compelling argument for the integration 
of single-cell approaches into future studies of the fate specification 
of cells of the immune system.

Through the use of sequential single-cell gene-expression  
measurements in activated lymphocytes during the course of a  
microbial infection in vivo, we constructed a temporal model  
that allowed us to predict the timing and changes in the expression 
of key genes in individual lymphocytes as they transitioned from the 
naive state toward each of several cellular fates. We provided experi-
mental evidence in support of a prediction of this temporal model: 
that differences in the expression of IL-2Rα may reflect one of the 
earliest molecular determinants that influence the memory-versus- 
effector fate ‘decision’. Moreover, we demonstrated that unequal 
partitioning of IL-2Rα during the first asymmetric division in vivo 
may result in its disparate abundance in daughter lymphocytes and 
potentially contribute to their acquisition of distinct gene-expression 
profiles and cellular fates.

Along with published evidence that other critical signaling mol-
ecules, such as the receptor for IFN-γ, can be unequally partitioned9, 
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Figure 6 Asymmetric segregation of IL-2Rα during the division  
of T lymphocytes influences the eventual fate of daughter cells.  
(a) Expression of CD62L and IL-2Rα (left) by OT-I CD8+ T cells  
undergoing their first division after adoptive transfer into recipient  
mice infected 24 h later with Lm-OVA; numbers adjacent to  
outlined areas indicate percent CD62LhiIL-2Rαlo cells (top left)  
or CD62LloIL-2Rαhi cells (bottom right). Right, quantification of  
results at left. (b) Frequency of cells expressing IFN-γ or  
granzyme B among CD62LhiIL-2Rαlo and CD62LloIL-2Rαhi cells  
as in a. (c) CD62L expression (left) by CD45.1+CD8+ T cells in  
CD45.2+ mice (n = 13) challenged with Lm-OVA and then, 48 h later,  
given IL-2RαloCD62Lhi or IL-2RαhiCD62Llo cells at division 1 (purified by sorting), assessed on day 49 after infection of recipients; numbers in top 
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CD45.1+CD8+ T cells in blood obtained (time, horizontal axis) from mice in c that were subsequently rechallenged with Lm-OVA at day 50 after the 
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our results suggest that asymmetric segregation of cytokine receptors 
during lymphocyte division may result in proximal daughter cells’ 
encountering more signaling by IL-2 and IFN-γ than that encoun-
tered by distal daughters. As IL-2 has been shown to induce Prdm1 
and repress Bcl6 and Il7ra37,38, while IFN-γ is known to induce 
Tbx21 (refs. 40,41), differences in cytokine signaling encountered by 
proximal and distal daughter cells may initiate a pre-effector gene- 
expression program or pre-memory gene-expression program, 
respectively, consistent with our experimental observations and with 
published work showing that cells that receive prolonged IL-2 signals 
acquire characteristics of terminally differentiated effector cells37. 
Continued changes in gene-expression patterns, influenced by envi-
ronmental signals, may allow lymphocytes to continue along distinct 
pathways toward terminal differentiation or self-renewal.

Published reports describing additional subsets of memory T lym-
phocytes, however, raise the possibility that the effector lineage or 
central memory lineage may not be the exclusive fate adopted by the 
progeny of CD62LloIL-2Rαhi cells and CD62LhiIL-2Rαlo cells. Tissue-
resident memory T cells42,43 do not circulate and instead remain 
in the peripheral tissues after pathogen clearance, while so-called 
‘effector-phenotype’ memory T cells share certain phenotypic char-
acteristics with terminally differentiated effector cells and mediate 
robust immunological protection in certain infectious settings despite 
exhibiting poor proliferative recall responses44. Indeed, some of the 
progeny of IL-2RαhiCD62Llo cells seemed to give rise to a popula-
tion of lymphocytes that, although poorly proliferative in response 
to microbial rechallenge, persisted in vivo, reminiscent of effector- 
phenotype memory cells. Thus, it remains possible that the first  
cellular division, in addition to mediating a divergence of the  
effector and memory fates, may also facilitate the specification of 
distinct memory cell subset fates.

Although the generation of long-lived memory lymphocytes is an 
essential feature of an adaptive immune response, the fundamental 
question of when and how these cells arise has remained controver-
sial. Resolving whether lymphocytes progress along a linear differen-
tiation pathway or diverge early during an immune response, owing 
to asymmetric cell division, necessitated our tracing individual lym-
phocytes as they underwent differentiation in vivo. By investigating 
the gene-expression patterns of individual lymphocytes during an 
immune response to a microbial pathogen, we reconstructed the 
lineage paths of single lymphocytes as they differentiated in vivo. 
This approach has yielded new insights into lymphocyte fate speci-
fication and has provided new evidence in support of the proposal 
of an early divergence of lymphocyte fates, via asymmetric division, 
during an adaptive immune response to microbial infection. More 
broadly, we anticipate that single-cell gene-expression approaches 
undertaken by investigators across scientific disciplines, along with 
ever-improving advances in such technologies as single-cell RNA 
sequencing45,46 and single-cell mass cytometry47, will continue to 
provide unprecedented molecular insights into cell-fate specifica-
tion in diverse biological settings, including immunity, development 
and cancer.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. GEO: gene-expression array data, GSE54321.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Mice. All animal work was done in accordance with Institutional Animal Care 
and Use Guidelines of the University of California, San Diego. All mice were 
housed in specific pathogen–free conditions before use. Wild-type C57/BL6J 
mice were from the Jackson Laboratory, and OT-I mice that recognize the OVA 
peptide SIINFEKL (residues 257–264) presented by H-2Kb were used.

Antibodies and flow cytometry. The following antibodies were used: anti-
CD8α (53-6.7), anti-CD45.1 (A20), anti-CD62L (MEL-14), anti-KLRG1 
(2F1), anti-IFN-γ (XMG1.2), anti-CD44 (IM7), anti-IL-2Rα (PC61), 
anti-Vα2 (B20.1), anti-CD4 (RM4-5), anti-B220 (RA3-6B2), anti-CD11b 
(M1/70), anti-CD11c (N418), anti-F4/80 (BM8), and anti-IL-7R (A7R34; 
all from Biolegend); F(ab′)2 antibody to rabbit IgG (polyclonal; eBioscience);  
rabbit anti-TCF-1 (C63D9; Cell Signaling Technology; and antibody to 
human granzyme B (GB11; Life Technologies). For intracellular detection 
of IFN-γ, CD8+ T cells were stimulated for 4 h at 37 °C ex vivo with 0.25 ng/ml 
SIINFEKL in the presence of brefeldin A (Sigma); cells were fixed in 4% 
paraformaldehyde (Electron Microscopy Services) and were permeabilized 
before staining. All samples were analyzed on an Accuri C6 or FACSCanto 
(BD Biosciences).

Adoptive cell transfer and infection. 5 × 103 OT-I CD45.1+ CD8+ T cells were 
adoptively transferred into congenic wild-type CD45.2+ recipient mice, fol-
lowed by intravenous infection 1 d later with 5 × 103 colony-forming units of 
L. monocytogenes expressing full-length chicken OVA (Lm-OVA). Splenocytes 
were isolated from recipient mice at 5, 7 or 45 d after infection. For the isola-
tion of cells at 3 d after infection, 2 × 104 OT-I CD8+ T cells were adoptively 
transferred. For the isolation of cells that had undergone their first division, 
2 × 106 OT-I CD8+ T cells were first labeled with CFSE (carboxyfluorescein 
diacetate succinimidyl ester) before adoptive transfer, and recipient mice 
were killed at 48 h after infection. Cells were stained with fluorochrome-
labeled anti-CD8, anti-CD44, anti-CD4, anti-CD11b, anti-CD11c and anti-
F4/80 (identified above) and were sorted on a MoFlo (Beckman Coulter) or 
FACSAria II (BD Biosciences).

Microbead-based enrichment. Magnetic bead–based enrichment was done 
as described48. Single-cell suspensions prepared from infected mice that had 
received OT-I CD8+ T cells were stained with phycoerythrin-conjugated anti-
CD45.1 (identified above), then were washed, stained with anti-PE magnetic 
microbeads (Miltenyi Biotec) and subjected to enrichment via a magnetic 
column. Cells were then stained and sorted as described above.

Lymphocyte fate–tracking experiments. Splenocytes from infected recipient 
mice that had received CFSE-labeled OT-I CD8+ T cells were stained with 
fluorochrome-conjugated anti-CD8, anti-CD62L and anti-IL-2Rα (identified 
above). Cells that had undergone their first division (the second-brightest CFSE 
peak) were electronically gated, and IL-2RαhiCD62Llo or IL-2RαloCD62Lhi 
cells were sorted. 350 cells of each phenotype were adoptively transferred into 
separate infection-matched CD45.2+ wild-type recipient mice. The progeny of 
transferred CD45.1+ T cells were monitored throughout the primary response 
in blood obtained by serial submandibular venipuncture. At 50 d after infec-
tion, recipient mice were rechallenged with 5 × 105 colony-forming units of 
Lm-OVA, and population expansion of the progeny of donor CD45.1+ T cells 
was tracked in the peripheral blood.

Single-cell gene-expression assays. TaqMan gene-expression assays (20×; Life 
Technologies) were pooled together in DNA Suspension Buffer (Teknova) 
to a final concentration of 0.2× for each of the 94 gene-expression assays. 
Single CD8+ T cells were sorted directly into RT-PreAmp Master Mix (Life 
Technologies) containing the pooled assays. Cell lysis, sequence-specific 
reverse-transcription and sequence-specific amplification of cDNA were 
done as described14 and high-throughput quantitative PCR was done on 96.96 
Dynamic Arrays with a BioMark system (Fluidigm). Cycling threshold values 
were calculated with BioMark system software. Cells in which the expres-
sion of both Actb mRNA and Rn18s mRNA was detected were retained for  
further analysis.

Statistical analysis. For statistical analysis, the Kolmogorov-Smirnov test was 
used for model-free comparisons involving two groups (Figs. 2b and 6b–d). 
Differences with a P value of <0.05 were considered significant.

Confocal microscopy of T lymphocytes. Immunofluorescence of T cells was 
analyzed as described9 with the following antibodies: anti-β-tubulin (AA2; 
Sigma), anti-IL-2Rα (PC61; eBioscience), anti-CD62L (MEL14; eBioscience), 
Alexa Fluor 488–conjugated anti-mouse IgG (A11029; Invitrogen) and Alexa 
Fluor 633–conjugated anti-rat IgG (A21094; Invitrogen). DAPI (4,6-diamidino- 
2-phenylindole; Life Technologies) was used for the detection of DNA. Cells 
undergoing cytokinesis were identified by brightfield as those having dual 
nuclei and a pronounced cytoplasmic cleft. Acquisition of image stacks was 
done as described9 with an FV1000 laser-scanning confocal microscope 
(Olympus). The volume of three-dimensional pixels (‘voxels’) containing the 
designated receptor fluorescence was quantified in each nascent daughter in 
cytokinetic cells as described9 with ImageJ software.

Data and preprocessing. The log expression of each gene ‘g’ was computed as 
follows: logEg,c = 40 − Ctg,c where c is the cell and Ctg,c is the cycling threshold 
value obtained from the BioMark (Fluidigm). Cells c′ with undefined cycling 
threshold values (Ctg,c′ = 999) for both g = Rn18s and g = Actb, or cells c″ with 
at least 60 ≤ Σg = 1

94  1{Eg,c″ ≤ 0} unexpressed genes were also removed from our 
analyses. The remaining ‘good’ cells in each population were deemed sufficient 
for all subsequent analyses, since they exceeded the number of free parameters 
for any supervised model by a factor of at least 5.

PCA. We used PCA to diminish dimensionality of the data with a linear trans-
formation and projected data X from their original 94 dimensions to the first 
two principal components. MATLAB software was used for PCA, with the 
function ‘pca’. To visualize the clustering of populations, we projected the cells 
from their original 94-gene space to the first two principal components of X. 
Each principal component, also known as ‘eigen-gene’, captures some percent-
age of the total variance in X proportional to its corresponding eigen value 
in the singular value decomposition of X. The first two eigen-genes have the 
largest eigen values. To visualize the contribution of each original dimension to 
those eigen-genes, we projected the 94 unit vectors on to the two-dimensional 
space spanned by the principal components. We combined these projections 
into the scatter and spike plots presented here (Figs. 2a,c and 3a).

t-distributed stochastic neighborhood embedding. To confirm our unsu-
pervised clustering results, we used t-distributed stochastic neighborhood 
embedding (tSNE)29, one of the most powerful dimensionality reduction 
methods, with our data set. This is specifically designed for the visualization 
of high-dimensional data and has been shown to capture more useful variance 
and more complex clustering patterns in data by attempting to preserve the 
distances between data points from high dimension to low dimension without 
any prior assumptions about the distribution of the data. In contrast, PCA 
captures only linear relationships between genes and principal components 
and assumes a single homoscedastic (spherical) Gaussian distribution for the 
entire data set.

JSD. To quantify differences between populations and heterogeneity in each 
population, we used JSD, a symmetric version of the Küllback-Liebler (KL) 
divergence, a parameter- and model-free metric of the distance between 
empirical distributions. Given two sets of experimental measurements, {x1,x2, 
…, xm} and {y1,y2,…, yn}, such as expression profiles for individual cells from 
the TCM and TEM populations (in this case xi ∈94), we used JSD to character-
ize the distance between the two empirical distributions Px and Py indicated 
by the expression by TCM and TEM cells, respectively.
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where M = (Px + Py) / 2 is an equal mixture of the two distributions, and the 
KL divergence can be approximated over ‘discretized’ histograms of its two 
input distributions:

ˆ ˆ ( ) ˆ ( )aP P i P P i P dyx x y y
i

i
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i

i

≈ = ≈ =
+ +
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1 1

This is the common form of JSD, which does not take into account the group 
sizes m and n. Instead of using the more general form, which allows arbitrary 
reweighting of the contribution from each distribution, we randomly sub-
sampled the larger group and concluded that the common form we used was 
not sensitive to differences in group size when those sizes were within a factor 
of 2; i.e., min(m,n) ≥ max(m,n) /2.

We interpreted each cell’s expression profile as a sample from the  
94-dimensional empirical distribution of its population. Expression values 
for each of the 94 genes is ‘discretized’ in the same bins, so we simply added 
the single-dimensional JSD of the two populations for each gene. Moreover,  
we identified the genes with the greatest and least difference in expression in 
the two populations, which did not need to match the PCA results exactly, 
since the JSD analysis does not make the simple linear modeling assumption 
that PCA does. Finally, to quantify the heterogeneity within a single popula-
tion, we randomly partitioned the population in half and measured the JSD 
of the two halves. Averaging that intrapopulation JSD for multiple random 
partitions gave an estimate of the true variation in each population.

That approach is more principled than a published application of JSD for 
measuring single-cell diversity, which arbitrarily converted each cell’s expres-
sion profile into a separate probability distribution over RNA molecules15. 
That was a misrepresentation of the BioMark output, which does not distribute 
a fixed ‘budget’ of expression units over the 94 genes of interest but instead 
measures the doubling times for each PCR primer and can be justified only 
for single-cell RNA-Seq experiments in which similar numbers of ‘reads’ are 
produced for each cell.

Rationale for approach to supervised analysis of gene-expression data. PCA 
and other unsupervised dimensionality-reduction methods aid in understand-
ing the structure of a cell population. However, such determinations are made 
by visual inspection. Given a heterogeneous (unsorted) population of cells 
X′, to classify a new cell (i.e., to identify which subpopulation it belongs to), 
we could cluster together the new samples with existing labeled data in X. 
Such an approach is suboptimal for two reasons: efficiency and accuracy. That 
approach is not efficient because to classify even one new cell x′ in X′, we must 
redo PCA of the original data X extended by a single row x′. More notably, 
the accuracy of that approach depends not only on the quality of X but also 
on that of x′, which we are trying to assess. If some of the new samples in X′ 
contain bad or ‘noisy’ readings that are not filtered by our criteria for X, the 
variance inherent in X′ will eclipse the useful structure observed in X and the 
coclustering result will be unrelated to or, even worse, counter to the original 
clustering of X. To resolve both of these problems, we decided to use super-
vised analysis, which ‘learns’ to distinguish between subpopulations of the 
labeled data X in the form of ‘boosted’ classifiers and applies the classifiers to 
the remainder of the cells in X.

Robust boosting. We used the RobustBoost algorithm32 to ‘train’ an ensemble 
of ‘decision trees’ at depths of ≤20. We chose boosting rather than other clas-
sification frameworks because the models that are ‘learned’ are easily inter-
pretable. For example, the alternating decision tree (ADTree) method31 for the 
TCM-versus-TSLE classifier (Supplementary Fig. 4a) consisted of simple rules 
by which the expression of Ptprc, Ccl5 and Sell was compared with thresholds 
‘learned’ from the data. The classifier’s confidence was measured by the margin 
of each prediction (red bars, Fig. 4a). We evaluated the performance of the 
classifier by its prediction accuracy in ‘leave-one-out’ cross-validation, where 
the m classifiers b1,b2, …, bm are each trained on a different subset of m − 1 
cells. Each classifier bi was tested on cell xc, which corresponded to the cth row 
of the data matrix X, after being trained on the remaining cells X-c = {x1,x2, …,  
xc-1, xc+1, …, xm}. Such cross-validation produced a group of m classifiers 
that provided an estimate of the generalization error ε = Σc

m
= 1 bc(xc) /m on 

the validation examples. This also generated an overall margin γ = Σc
m

= 1 γc 
on the training examples by tallying the predictions of m − 1 informed and 1 

uninformed classifier for each of the m cells, where γc = ||b1…m(xc) − lc|| and 
lc is the label of cell c (in this case lc = −1 means TCM and lc = 1 means TSLE).

Temporal model of CD8+ T cell differentiation. Akin to the Heisenberg 
uncertainty principle, the problem of observing a cell’s gene expression is 
that a cell must be modified (i.e., destroyed) to allow observation of its gene 
expression. Although it is not a concern for single-cell analysis of static popu-
lations, it is a limitation in capturing the dynamics of tracing the lineage of a 
cell. We propose a statistical modeling approach to overcome that limitation 
with approximate single-cell histories sampled from the available time-series 
gene-expression data33. We constructed hypothetical differentiation paths and 
trained an HMM on the resulting expression time courses. Starting from each 
naive cell, we sampled cells in successively more mature stages whose expres-
sion profiles satisfied an ensemble of predictors for one of the terminal fates, 
matched those samples in the early differentiation stages (division 1 and day 3),  
connected both ends of each path and finally estimated the transition and 
observation parameters of a six-state HMM to learn the state-to-state transi-
tion probabilities and in-state mixture components that capture the dynamics 
of gene expression in the hypothetical histories.

Input data. To capture the temporal structure of T cell differentiation in 
our time-course gene-expression data from single cells, we developed a 
semi-supervised method based on the fate classifier predictions in early het-
erogeneous populations (Fig. 4d) and on the expression profiles of putative 
pre-memory and pre-effector cells purified from TMP and TSLE populations by 
sorting on day 5 after infection. Then, we constructed hypothetical differentia-
tion histories of single cells starting from the naive population, going through 
an intermediate stage and ending in one of the three terminal fates: TCM, 
TEM or TSLE. To approximate the real distribution of proliferation transitions 
between these stages, we used 1,000 bootstrap samples from each subpopula-
tion ‘stringed’ along one of the three main paths according to their classifier 
scores. This resulted in an empirical distribution over early transitions (naive 
to pre-TSLE, and naive to pre-memory) and another distribution over late 
transitions (pre-memory to TCM, pre-memory to TEM, and pre-TSLE to TSLE). 
The early transitions were then connected to the late transitions by cells at 
the intermediate states.

Model structure. Since the differentiation dynamics of individual proliferating 
T cells are not yet well described, we used an HMM to model the data because 
of its simple yet powerful structure, which decouples uncertainty in the line-
age reconstruction (state transitions) from measurement noise (observations-
emissions). We constructed an HMM with six states (naive, pre-memory, TCM, 
TEM, pre-TSLE and TSLE) to capture the signal in each empirical distribution 
from our temporal approximation input. Each state ‘emits’ gene expres-
sion from a mixture of two 94-dimensional Gaussian distributions with full  
covariance matrices.

Because of concerns about our model’s sensitivity to initialization, we con-
structed 18 biologically plausible differentiation pathways (6 sequential and 
12 bifurcating; structures, Supplementary Fig. 4c) and fixed the transition 
parameters to the corresponding adjacency matrix of each structure in turn. 
Using the learning algorithm described below, we calculated the posterior 
log-likelihood of each pathway. To address any further concerns about the 
robustness of these results, we reinitialized each structure twice more with 10% 
random noise drawn from the standard uniform distribution over the [0,1] 
interval, which also ensured that there were no zero-probability transitions 
between any two states.

Transition parameters. For a cell c in state f, the probability of transition-
ing to state t is Tf t

c
, . We assumed that other cells whose expression profile in 

state f was similar to that of cell c would have similar differentiation potential 
and, in particular, have a similar probability of transitioning to state t. That 
assumption allowed us to share the parameters Tf,t = P(f→t) which gives the 
probability of any cell in state f to proliferate to state t.

Observation parameters. Because of the bimodal nature of our ‘violin plots’ 
(Fig. 4d), we modeled the observed expression x of cell c in state i as a mixture 
model of two Gaussian distributions with 94-dimensional means mi

c and hi
c,  
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94 × 94 full covariance matrices Σi
c  and Ξi

c. Like the transitions, parameter 
sharing between cells allowed us to simplify the observation parameters, which 
resulted in the following observation model:

P x s i a x b xi i i i i i( | ) ( ; , ) ( ; , )= +∝ N Nm hΣ Ξ

Learning algorithm. First, we initialized the model parameters to their prior 
distributions. Specifically, the transitions P(f → t) were initialized to the matrix 
Tf t,
0  (Fig. 5b). The emission parameters for the naive, TSLE, TCM and TEM 

states were initialized to the maximum-likelihood fit for a mixture of two 
Gaussian distributions to the empirical histograms of gene expression for the 
respective population. The emission parameters in the intermediate states, 
pre-memory and pre-TSLE, were fit to the empirical histograms accumulated 
over all intermediate states. The transition parameters were fixed throughout 
the duration of each learning run but were randomized with up to 10% noise 
as described above.

Finally, we optimized the parameters of the HMM with the expectation 
maximization algorithm implemented in pmtk3, the probabilistic modeling 
toolkit for MATLAB or Octave software34. The learned emission parameters 
were used to identify the genes whose relative expression changed the most 
during each transition (Fig. 5b–c). While we did not learn the transition 
probabilities, we did resample them from 18 plausible structures and picked 

the most likely structure (transition matrix, Supplementary Fig. 4d; adja-
cency graph, far bottom right, Supplementary Fig. 4c). To determine the 
most likely structure, we calculated the posterior likelihoods of each HMM 
(starting from ten random re-initializations) and compared their cumula-
tive distribution functions (Supplementary Fig. 4c). To further gauge the 
statistical significance of the best model, we randomly shuffled the input data  
100 times for each model and built a background distribution of the resulting 
log-likelihoods. To determine both the significance and robustness of each 
HMM compared with its own shuffled background consisting of 100 random 
shuffles of the data, we used the nonparametric Kolmogorov-Smirnov method 
to determine if the log-likelihoods of each model were significantly higher for 
the real data than for the shuffled data and to provide a P value for the signifi-
cance of each result. To test the reproducibility of our results relative to that 
of the bootstrap sampling method, we resampled the data and did another 10 
randomly initialized training runs on the best model (Supplementary Fig. 4c,  
bottom right). Finally, we did Kolmogorov-Smirnov tests of each proposed 
structure to ensure that the best model’s cumulative distribution function 
represented significantly higher log-likelihoods than those of the other models 
or its own background.

48. Moon, J.J. et al. Tracking epitope-specific T cells. Nat. Protoc. 4, 565–581 
(2009).
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