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Abstract

Background: Tuberous sclerosis complex (TSC) is a genetic disease characterized by benign tumor growths in
multiple organs and neurological symptoms induced by mTOR hyperfunction. Because the molecular pathology is
highly complex and the etiology poorly understood, we employed a defined human neuronal model with a single
mTOR activating mutation to dissect the disease-relevant molecular responses driving the neuropathology and
suggest new targets for treatment.

Methods: We investigate the disease phenotype of TSC by neural differentiation of a human stem cell model that had
been deleted for TSC2 by genome editing. Comprehensive genomic analysis was performed by RNA sequencing and
ribosome profiling to obtain a detailed genome-wide description of alterations on both the transcriptional and
translational level. The molecular effect of mTOR inhibitors used in the clinic was monitored and comparison to
published data from patient biopsies and mouse models highlights key pathogenic processes.

Results: TSC2-deficient neural stem cells showed severely reduced neuronal maturation and characteristics of
astrogliosis instead. Transcriptome analysis indicated an active inflammatory response and increased metabolic activity,
whereas at the level of translation ribosomal transcripts showed a 5’UTR motif-mediated increase in ribosome
occupancy. Further, we observed enhanced protein synthesis rates of angiogenic growth factors. Treatment with
mTOR inhibitors corrected translational alterations but transcriptional dysfunction persisted.

Conclusions: Our results extend the understanding of the molecular pathophysiology of TSC brain lesions, and
suggest phenotype-tailored pharmacological treatment strategies.
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Background
The mTOR pathway is involved in a plethora of patholo-
gies, in particular carcinogenesis [1]. However, the large
number of processes downstream of mTOR and result-
ing heterogeneity of clinical manifestations impede a
deeper understanding of the disease mechanisms and se-
lection of the optimal treatment strategy. For example,
patients with tuberous sclerosis complex (TSC), caused
by mutations in the tumor suppressor genes TSC1 or

TSC2 leading to mTOR hyperfunction, show heterogen-
eity of benign tumors and cellular dysplasia in multiple
organs, including astrocytomas and cortical tubers in the
brain [2–4]. Loss of heterozygosity for either TSC gene
due to somatic mutation of the functional allele in het-
erozygous patients was detected in these lesions and in-
duces cancerous growth [5–7]. In addition, TSC patients
develop central nervous system abnormalities, including
structural alterations of the cortex, epilepsy, and psychiatric
symptoms [8]. Clinical trials with mTOR inhibitors are on-
going to treat the manifestations of this disease [9, 10].
However, while mTOR inhibitors have tremendous poten-
tial as disease modifying agents, it remains unclear if they
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can be effective to treat the full spectrum of TSC-
associated pathophysiology.
Work on mouse models identified neural progenitor

cells as the origin of brain lesions [11–15]. Nonetheless,
the paucity of human cellular models has limited a bet-
ter mechanistic understanding of brain lesions in TSC
patients. Hence, availability of a human TSC in vitro sys-
tem to model the in vivo pathogenesis and perform ex-
perimental analysis would enable discovery of novel
targets for pharmacological intervention. Recently a pio-
neering study on osteosarcoma demonstrated the utility
of modeling carcinogenesis with human stem cells to
elucidate disease mechanisms and identify new treat-
ment options [16].
Here we used human neural stem cells (NSCs) derived

from embryonic stem cells (ESCs) that have been bialleli-
cally deleted for TSC2 by genome editing to study the cel-
lular and molecular pathophysiology of TSC. This TSC in
vitro model showed reduced neuronal maturation poten-
tial and increased commitment to the astrocyte lineage,
providing valuable insight for the study of TSC patient bi-
opsies [17]. Using RNA sequencing (RNA-Seq) and ribo-
some profiling, we performed a comprehensive analysis of
the genome-wide consequences of TSC2 loss on both
transcription and translation. We detected a disease-
relevant inflammatory response on the transcriptional
level while translatome analysis demonstrated motif-
dependent translational dysfunction of protein synthesis
factors as well as increased production of angiogenic
growth factors. Inhibition of mTOR signaling corrected
the translation defects but not the inflammatory or angio-
genic growth factor response, which were due to altered
transcription. Thus we provide important insight into the
molecular pathology of tuberous sclerosis and present an
experimental system for future investigation of disease-
modifying compounds beyond mTOR inhibitors and de-
velopment of comprehensive therapies for TSC.

Methods
Cell line generation and neural differentiation
An allelic deletion series of TSC2 was established from
the parental ESC line SA001 (NIH registration number
0085) by use of zinc finger nucleases targeting exon 11
of the TSC2 locus. Site-specific integration was con-
firmed by polymerase chain reaction (PCR) amplification
of the genomic locus followed by direct sequencing. Ab-
sence of non-specific integration sites was determined
by targeted locus amplification followed by deep sequen-
cing. Neural conversion of ESCs to NSCs was performed
using a dual SMAD inhibition protocol. Generation of
cell lines is described and documented in detail by Costa
et al. [18].
NSCs were cultured according to standard methods. All

used tissue culture dishes were coated with poly-L-

ornithine (Sigma Aldrich) and laminin (Roche) and undif-
ferentiated cultures were maintained in a basic medium
composed of a 1:1 mix of DMEM:F12 Glutamax medium
and Neurobasal medium (both Gibco, Invitrogen) that
was supplemented with 1× B27, 1× N2, and 0.1 mM beta-
mercaptoethanol (all Gibco, Invitrogen). For self-renewing
conditions the following growth factors were added:
10 ng/mL FGF2, 20 ng/mL BDNF (both Peprotech), and
10 ng/mL EGF (R&D Systems). Ventralization was in-
duced for a period of seven days by replating the cells at a
density of 12,000 cells/cm2 and changing the supplement-
ing growth factors to 200 ng/mL Shh, 100 ng/mL FGF8
(both Peprotech), and 100 μM ascorbic acid phosphate
(Sigma Aldrich). Neuronal differentiation was initiated by
replating the cells at a density of 40,000 cells/cm2 in basic
medium supplemented with 20 ng/mL BDNF, 10 ng/mL
GDNF (both Peprotech), 0.5 mM cAMP (BIOLOG Life
Science), and 100 μM ascorbic acid phosphate (Sigma
Aldrich). Medium was changed twice per week until the
day of analysis.

Library preparation and sequencing
Ribosome profiling and RNA sequencing libraries were
prepared using the TruSeq Ribo Profile kit (Illumina,
#RPHMR12126) as detailed in the manufacturer’s proto-
col. Cells for each biological replicate of control, hetero-
zygous, and homozygous cells with or without drug
treatment were washed with ice cold PBS and lysed on
ice in the presence of 100 μg/mL cycloheximide (Sigma).
The cleared lysate was flash frozen and stored at −80 °C
until further processing. For ribosomal RNA depletion,
the RiboZero magnetic Gold kit (Illumina) was used.
Quality of amplified libraries was accessed by capillary
electrophoresis with a high sensitivity DNA chip on a
2100 Bioanalyzer (Agilent Technologies) and quantified
by quantitative PCR with a sequencing library quantifi-
cation kit (KAPA Biosystems) on a Roche Light Cycler
480. Multiplexed libraries with 1 % spiked in PhiX con-
trol were sequenced on a HiSeq2500 instrument for
50 cycles using version 4 chemistry reagents (Illumina).
BCL files were converted to the fastq format for further
bioinformatics processing.
The sequencing data from this publication is available

at the GEO database.

Bioinformatic analysis
Linker tags were removed from RNA-Seq and ribosome
profiling reads by the FASTX Toolkit, v0.0.13 (http://
hannonlab.cshl.edu/fastx_toolkit/). All reads that
mapped to rRNAs, tRNAs, or mitochondrial rRNAs
were removed, and the remaining reads were mapped to
RefSeq (v38) by TopHat v2.0.13 [19]. Finally, all read
counts that mapped uniquely to genes were extracted
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for expression analysis with the help of samtools, v1.1
[20].
We applied the edgeR [21] algorithm for differential gene

expression analysis and identified genes with absolute log2
fold change larger than 1 and Benjamini–Hochberg
adjusted p value smaller than 0.05 as significantly changed.
We applied the camera [22] algorithm for gene set enrich-
ment analysis with gene sets collected in the Roche internal
database RONET. The same method was applied for
upstream regulator analysis, with transcriptional targets of
human transcription factors and gene expression modula-
tors curated from literature in RONET as input. Gene
ontology enrichment analysis was performed using the
Fisher’s exact test.
To validate our findings with results of previous stud-

ies, we retrieved gene expression data from GEO
(GSE35338 for Zamanian et al. and GSE16969 for Boer
et al.) or ArrayExpress (E-MEXP-2351 for Tyburczy
et al.) and performed differential expression analysis
with the limma [23] package. Gene set enrichment ana-
lysis was performed in the same way as RNA-Seq data to
allow fair comparisons.
We constructed an analysis pipeline to analyze the ribo-

some profiling data. In essence, the pipeline estimates
both amplitude and statistical significance of differential
translation efficiency (TE). TE is defined as the ratio
between expression levels measured by messenger RNA
sequencing and by ribosome sequencing, with pseudo-
counts of 1 added to each to avoid division by zero. The
amplitude of TE change between two conditions is
estimated by the log2-transformed ratio of two TEs. The
statistical significance is estimated by the babel method
[24] based on errors-in-variables regression models.

Microfluidic quantitative PCR (qPCR)
Cells from biological triplicates were harvested in TRIzol
Reagent (LifeTechnologies) in weekly intervals and RNA
was extracted according to the manufacturer’s instruc-
tions. Traces of contaminating DNA were removed
using the TURBO DNA-free kit (LifeTechnologies). Syn-
thesis of complementary DNA (cDNA) was performed
using the SuperScript III First Strand Synthesis Mix
(LifeTechnologies). For the non-enzyme control, a refer-
ence pool of all samples was used. cDNAs were sub-
jected to specific target amplification prior to qPCR
analysis using a pool of standard predesigned TAQman
assays to be used later (Applied Biosystems) with a pre-
amplification mastermix (Roche Life Science). Preampli-
fied cDNA was diluted 1:5 and processed together with
the TAQman assays for analysis in 96.96 Dynamic Array
integrated fluidic chips on the BioMark HD platform
(Fluidigm) according to the manufacturer’s instruction.
Data were analyzed using Real-Time PCR Analysis soft-
ware (Fluidigm).

Flow cytometry
For flow cytometry analysis, cells were analyzed as de-
scribed previously [25]. In brief, cells were dissociated
with Accutase (Sigma, A6964), treated with DNase
(Sigma, D5025), and resuspended in sorting medium
(growth medium supplemented with 0.5 % BSA and
5 mM EDTA). 1 × 106 cells were stained with anti
CD184 (BD555976) and anti CD44 (BD555479) anti-
bodies according to the manufacturer’s recommenda-
tions for 20 min at 4 °C. Stained cells were washed once
more with sorting medium and centrifuged at 250 g for
5 min before acquisition of data on a FACSCanto II flow
cytometer. For analysis of protein synthesis rates, the
Click-iT Plus OPP kit (LifeTechnologies, C10456) was
used and cells prepared according to the manufacturer’s
instructions. Data were analyzed using FlowJo v10.0.8
software.

Western blot analysis and protein arrays
Cells for protein analysis were directly lysed using RIPA
buffer (LifeTechnologies) supplemented with protease
and phosphatase inhibitors (Roche Life Science). Total
protein concentration was quantified by BCA assay
(LifeTechnologies). For SDS-PAGE, 20 μg of total pro-
tein lysate were analyzed by western blotting on nitrocel-
lulose membranes (BIO-RAD). For western blot analysis,
all antibodies were used at 1:1000 (except anti-β-actin
which was used 1:20,000) and chemiluminescence was
detected with ECL Reagent (GE Healthcare) using a Fu-
sion FX system (Vilber Lourmat). The same membranes
used to detect proteins of interest were stripped,
blocked, and reprobed with anti-beta-Actin antibody.
Primary antibodies used were mouse-anti-STAT3 (CST
#9139), rabbit-anti-phospho-STAT3 (Tyr705) (CST
#9131), rabbit-anti-GFAP (Dako Z0334), HRP linked
mouse-anti-beta-Actin (Abcam ab49900), rabbit-anti-S6
ribosomal protein (CST #2217), and rabbit-anti-phospho
S6 ribosomal protein (Ser240/244) (CST #2215). Sec-
ondary antibodies used were HRP linked anti-mouse
(Santa Cruz Biotechnology sc-2005) and HRP linked
anti-rabbit (Santa Cruz Biotechnology sc-2030). For
quantification of cytokines and angiogenesis factors, the
secreted proteins in conditioned media were detected
using Proteome Profiler array kits (R&D Systems) ac-
cording to the manufacturer’s instructions. The intensity
of the signals was quantified and normalized by densi-
tometry using ImageJ software.

Immunocytochemistry
For immunofluorescence analysis, cells were cultured in
96-well plates (BD Falcon), fixed in 4 % PFA in PBS for
10 min, permeabilized with 0.25 % (v/v) Triton X-100 in
PBS for 5 min, and incubated for 45 min at room
temperature in blocking solution (10 % BSA w/v in
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PBS). Primary (anti-GFAP DAKO, anti-HuC/D Life
Technologies, anti-Doublecortin Santa Cruz) and sec-
ondary antibodies were diluted in 3 % BSA (w/v) and in-
cubated overnight at 4 °C and for 1.5 h at room
temperature, respectively. Upon removal of secondary
antibody, cells were incubated with DAPI (1 μg/mL) in
PBS for 5 min at room temperature. Confocal fluores-
cence images were acquired using a Leica TCS SP5
(Leica Microsystems) inverted microscope. Stacks ac-
quired along the z-axis were converted into maximum
projections using LAS-AF software.

Results
TSC2-deficient neural stem cells exhibit altered neuronal
and glial differentiation
Loss of heterozygosity was reported in TSC patient biop-
sies and mouse models showed that brain lesions arise
from neural progenitor cells [6, 12]. In order to investigate
the pathogenesis of these brain lesions, we employed fore-
brain neural stem cells derived from human embryonic
stem cells as an in vitro model. Two TSC2-deficient cell
lines were derived from a parental stem cell line by
performing genome editing using zinc finger nucleases to
disrupt both TSC2 alleles as described by Costa et al. [18].
In control cell lines, the same inactivating cassette was
inserted into the AAVS1 locus, which induces no pheno-
typic effects [26], and absence of off-target integrations
was determined by targeted locus amplification sequen-
cing. In contrast to the control cell lines, TSC2-deficient
cells showed no detectable TSC2 protein expression and
increased phosphorylation of mTOR target ribosomal
protein S6 (RPS6), indicating mTOR hyperfunction
(Additional file 1: Figure S1A).
We applied a differentiation protocol that induces a

temporal order of neurogenesis and gliogenesis similar
to in vivo neurodevelopment with cells acquiring expres-
sion of markers of functional neural cell types as well as
mature electrophysiological properties within six weeks
of differentiation. Reproducibility of the protocol was
shown by the high degree of correlation of protein ex-
pression changes after 41 days of differentiation across
different wild-type NSC lines with at least five independ-
ently differentiated biological replicates [27]. To monitor
cell fate over the course of neuronal differentiation, we
collected samples in weekly intervals (Fig. 1a) and deter-
mined transcript levels of neuronal and glial differenti-
ation and maturation markers by qPCR (Fig. 1b and
Additional file 1: Figure S1B). At the start of differenti-
ation, TSC2-deficient cells downregulated neural stem
cell marker SOX2 similar to control cells. However, at
week 3 of differentiation, pro-neural transcription factor
MASH1 was expressed at significantly lower levels in
TSC2-deficient cells. This suggests that generation of
functional neurons might be affected, although at the

same time induction of TBR2, associated with a neur-
onal progenitor state, was observed. In contrast to neur-
onal fate regulator MASH1, the glial cell fate regulators
NF1B and NF1X were expressed earlier and stronger as
well.
Eventually, at week 6, TSC2-deficient cultures exhib-

ited in comparison to controls severely reduced levels of
transcripts required for functional maturation of gluta-
matergic and GABAergic neurons. These include both
pre- and postsynaptic markers, such as GABA and glu-
tamate receptors, and neural cell adhesion proteins.
Equally, markers of oligodendrocytes (OLIG1, OLIG2)
and astrocytes (ALDH1L1, S100B) as well as other crit-
ical genes for astrocyte functionality like glutamate
transporters (EAAT3, GLAST, and GLT-1) were strongly
downregulated, together indicating that TSC2 is required
for generation of functionally mature cell types.
A reduced differentiation of radial glia cells into oligo-

dendrocytes leading to myelination defects is also seen
in the TSC mouse models [28–30]. Simultaneously the
majority, but not all, of these models show a strong up-
regulation of GFAP as a marker of immature glia and
astrogliosis [28, 29, 31], which can also be found in TSC
patient biopsies [32]. Notably, such markers (GFAP,
AQP4) also showed stronger expression in our TSC2-de-
ficient cells (Fig. 1b), suggesting an altered cell fate also
in the in vitro model. This was also supported by flow
cytometry analysis of CD44 and CD184 (Additional file
1: Figure S1C), which can monitor the generation of
neuronal and glial populations from human pluripotent
cells [25]. Therefore, we confirmed GFAP expression at
the protein level by immunofluorescence staining, re-
vealing a stark increase in the number of cells expressing
GFAP (Fig. 1c and Additional file 1: Figure S1D). Fur-
thermore, western blot analysis showed that there was a
significant increase in GFAP protein levels in TSC2-defi-
cient cultures (Fig. 1d). As STAT3 signaling is linked to
GFAP expression and involved in regulation of astrocyte
development and phenotype [33, 34], we determined
STAT3 activity by western blot analysis and detected a
significant increase in phospho-STAT3 levels in our
TSC2-deficient cell lines (Fig. 1e).
In summary, using our human cellular model, we

showed that differentiating TSC2-deficient NSCs exhibit
increased expression of markers indicative of an early
astroglial lineage and reduced differentiation in mature
neuronal and astroglial cell types.

Transcriptome analysis illustrates an active inflammatory
response in the TSC2 brain lesion model
To characterize the aberrant cell state due to absence of
TSC2, we performed RNA-Seq on the cells after six
weeks of differentiation. We included two TSC2
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heterozygous cell lines derived from the same parental line
in the analysis to serve as cellular models recapitulating
heterozygous tissue of TSC patients and to study TSC2
gene dosage dependent effects. While only ten genes
showed significant expression changes in TSC2 heterozy-
gous cells, there were over 2000 genes either upregulated
or downregulated in TSC2 depleted cells (Additional file
2: Figure S2A and Additional file 3: Table S1). Corres-
pondence analysis of transcriptomes, which is concep-
tually similar to principal component analysis, yet
more suitable for discrete sequencing counts [35], il-
lustrated the similarity between control and heterozy-
gous cells as well as the dissimilarity of those to
TSC2 homozygous cells (Fig. 2a).
We aimed to further explore the astrocyte phenotype

in TSC2-deficient cultures that was suggested by the al-
tered expression of astrocytic markers. Therefore, we
compared our RNA-Seq data to published gene expres-
sion data of mouse models of astrogliosis, which show
strong activation of astrocytes [36]. There was a highly
significant overlap of misregulated genes among the
datasets as determined by Fisher’s exact test (p = 4.9e-25
and 5.5e-10, respectively), despite the overall lower num-
ber of genes identified by microarray (Fig. 2b). Gene set
enrichment analysis (Additional file 2: Figure S2B–F)
identified many induced genes to be implicated in meta-
bolic pathways. In particular the enzymes of almost all
catalytic steps in the glycolytic pathway were induced,
highlighting an increased metabolic activity in the ab-
sence of TSC2 (Fig. 2c). Moreover, the enrichment in
inflammation-related functional categories (Additional
file 4: Table S2) supports the notion of an altered astro-
cyte state.
To identify activation of which signaling pathways

could induce the transcriptional changes observed, we
performed upstream regulator analysis with our
complete dataset. In particular, inflammatory cytokine
signaling was highlighted, for example by interleukins
and interferons (Fig. 2d); together with transcription fac-
tors, such as AP1 and NFkB, which are key mediators of
the transcriptional response to inflammation. Also
STAT3 activation was identified here again, consistent
with the higher STAT3 phosphorylation levels detected
in western blot analysis. Other interesting pathways with
significant enrichment were related to hypoxia and an-
giogenic growth factors like VEGF and PDGF.
We addressed the clinical relevance of these findings

by comparison with published microarray data from
resected cortical tubers of TSC patients [37]. Notably,
there was a strong correlation in gene ontology term en-
richments for our in vitro model with those for the biop-
sies (Fig. 2e and Additional file 5: Table S3).
Inflammation-related terms showed enrichment in both
datasets, such as immune response with a p value of

0.0028 for patient tubers and 0.00014 for the in vitro
model, thereby attesting relevance to our findings.
Shared upregulated genes included interferon-inducible
genes, such as GBP1 and GBP2. Also, genes implicated
in regulation of blood vessel development, such as mem-
bers of the angiopoietin family, were induced in both
types of samples leading to significant enrichment of re-
spective ontology terms and pointing to another patho-
logically relevant process. In line with the results on cell
fate changes, this global analysis shows that genes with
reduced expression were enriched for terms related to
synaptic transmission in both the in vitro model and pa-
tient biopsies. In addition, we compared our data to
publicly available microarray data from subependymal
giant cell astrocytomas (SEGAs) that also arise in TSC
patients and show a larger contribution of glial cells as
compared to cortical tubers. The correlation in gene ex-
pression changes to these glioneural tumors was even
stronger (Fig. 2f and Additional file 6: Table S4) with
more gene sets passing the significance threshold and
showing the same direction of deregulation in both in
vitro and in vivo samples. Notably, again inflammation
and blood vessel development were the key categories
induced, while neuronal differentiation and related terms
were those most significantly decreased. Together this
analysis indicates that the same type of disease processes
is relevant to all three sample types and that our model
also molecularly is closer to astrocytomas than cortical
tubers.
Of these disease-relevant processes, neuroinflamma-

tion in particular is of interest as it is strongly linked to
epileptogenesis and likely plays a role in generation of
seizures in TSC patients [38]. Thus, we sought to deter-
mine levels of inflammatory markers with reported
expression in brain lesions by using protein arrays
(Additional file 2: Figure S2F). We detected a 12-fold
induction of the soluble form of ICAM1, an important in-
dicator for activity of the proinflammatory cascade in as-
trocytes of TSC lesions [39]. Moreover, there was a nine-
fold increase in plasminogen activator uPA that is strongly
induced in epileptogenic cortical tubers [40]. Finally, there
was a more modest, yet still significant induction of IL6
and IL8 reported for cortical tubers and lung cysts of TSC
patients, respectively [41, 42]. Interestingly, inflammatory
signaling was recently suggested to be involved in epilep-
togenesis in a TSC1 mouse model [43], further highlight-
ing the importance to study inflammatory mechanisms in
future efforts to treat TSC-associated epilepsy.
Based on the similarities of physiological processes

transcriptionally altered between brain lesion biopsies
and our TSC2 deletion in vitro model, we conclude that
our model holds disease relevance and provides valuable
insight into the molecular pathology of TSC. In particu-
lar, using our comprehensive dataset from the human
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model system, we could provide deeper insight into the
relevant roles of inflammation and angiogenesis in TSC
pathology.

Ribosome profiling demonstrates increased protein
synthesis of growth factors in TSC2-deficient cells
In addition to transcriptional changes, TSC2-deficient
cells are expected to show translational changes as
mTOR signaling is a key regulator of translation initi-
ation [44]. To detect translational dysfunction in our
brain lesion model after six weeks of differentiation we
performed ribosome profiling, which allows quantifica-
tion of dynamic changes in translation of all transcripts
and can serve as a measure of protein synthesis on a
proteome-wide scale by using deep sequencing [45]. In
cells homozygous for TSC2 deletion but also in hetero-
zygous cells, having shown almost no transcriptional
changes, translationally deregulated transcripts were de-
tected (Fig. 3a). That the majority of transcripts with
changed translation showed no simultaneous change in
transcript abundance indicates a regulatory control of
translation independent of transcriptional control.
To explore such regulatory control, we performed motif

discovery within the 5’UTR of affected transcripts, be-
cause mTOR responsiveness of transcripts can be regu-
lated by presence of a terminal oligopyrimidine (TOP)
motif in the 5’UTR [46]. Enrichment for such a
pyrimidine-rich motif could be confirmed among transla-
tionally regulated transcripts in TSC2 deletion homozy-
gous cells (Fig. 3b), but not in heterozygous cells. The
presence of this motif in a transcript was associated with
an increase in TE by two-fold to four-fold in TSC2-defi-
cient cells, but not for the same transcripts in heterozy-
gous cells (Fig. 3c). To identify overrepresented functional
categories associated with mistranslated transcripts and to
understand what impact the translational dysfunction may
have on the cellular phenotype, we performed gene set en-
richment analysis. While no functional category was
enriched for the set of transcripts with altered translation
in heterozygous cells, a clear and translation level specific
enrichment for a function related to protein synthesis was
identified in TSC2 deletion homozygous cells (Fig. 3d,
Additional files 7 and 8: Figure S3A and Table S5).
To test if this induction has a direct consequence on

the biosynthetic capacity of the cells, we went on to
probe protein synthesis rates. Using flow cytometry, the
incorporation rate of an amino acid analog into newly
synthesized protein was determined and we could con-
firm that homozygous cells indeed showed higher syn-
thesis rates than heterozygous or control cells (Fig. 3e).
To elucidate what biological processes might be affected
most we determined their respective enrichment among
proteins with a synthesis rate raised by at least four-fold.
Proteins with enhanced synthesis rates were most

frequently implicated in induction and control of blood
vessel formation such as VEGF, PDGF, and AGT (Fig. 3f ).
This demonstrates that the observed increased transcrip-
tion of angiogenic factors, recapitulating findings from
patient biopsies, leads to higher protein synthesis rates.
An additional process highlighted in this analysis was
tissue remodeling, which always needs to be closely
aligned with regulation of angiogenesis, and their con-
current enrichment points to a co-regulation of these
linked processes. To validate these ribosome profiling re-
sults we used protein arrays to confirm higher produc-
tion of angiogenic factors by TSC2-deficient cells and we
were able to confirm significantly induced levels of the
angiogenic growth factors VEGF, HGF, PDGFA, ANG,
and ANGPT1 (Fig. 3g and Additional file 9: Table S6).
In summary, we could demonstrate a 5’UTR pyrimidine-

rich motif dependent increase in translation of factors in-
volved in protein synthesis in the absence of TSC2. Such
translation-specific regulation during carcinogenesis was
previously also described for transcript subsets implicated
in metastasis and regulation of oxidative stress [47, 48].
Here, it illustrates the control of the mTOR pathway over
the cell’s protein synthesis capacity, a mechanism frequently
exploited by oncogenic events driving hypertrophic growth
[49, 50]. Elevated synthesis of angiogenic growth factors in
our neural cell-specific in vitro model implies that mutant
cells may have the ability to promote blood vessel forma-
tion to sustain the growth of TSC2-deficient astrocytomas.
This notion is also coherent with the highly vascularized
tumors of TSC patients in other organs, like angiofibromas
and angiomyolipomas [51]. In support of the pro-
angiogenic phenotype we observe in our model, it was re-
cently reported that an endothelial-cell-specific deletion of
Tsc1 in a mouse model of angiosarcoma led to retinal
angiogenesis and formation of vascular tumors [52]. Block-
ing of autocrine VEGF signaling in this mouse model was
able to abolish vascular tumor development and growth.
Therefore, inhibition of angiogenesis should also be consid-
ered as an alternative treatment strategy for astrocytomas
requiring surgery.

Pharmacological inhibition of mTOR corrects translational
defects but not the pathologic cellular state
Having recognized angiogenic growth factors, an inflam-
matory response, and induced translation of the protein
synthesis machinery as altered disease-relevant mecha-
nisms in our TSC model with mTOR hyperfunction, we
set out to investigate the therapeutic molecular effects of
mTOR inhibitors. To mimic treatment of established
brain lesions in TSC patients, we treated TSC2 deleted
cells with mTOR inhibitors after six weeks of differenti-
ation and performed ribosome profiling and RNA-Seq
analysis. In clinical trials rapamycin analogs were shown
to induce regression of astrocytomas in TSC patients,
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which however can regrow once treatment is stopped
[10, 53]. Besides rapamycin that inhibits mTOR allosteri-
cally, we also tested the effect of ATP-competitive
mTOR kinase inhibitor AZD-8055 [54].
Consistent with the central role of mTOR in activation

of translation, treatment with both inhibitors primarily
led to reduced translation of transcripts and had a
weaker effect on transcription (Fig. 4a and Additional
file 10: Table S7). Among the transcripts showing down-
regulated translation after inhibitor treatment of TSC2
deleted cells, there were 76 target transcripts shared by
both rapamycin and AZD-8055. This shared set repre-
sents three-quarters of all transcripts affected in either
treatment, suggesting a consistent set of targets affected
by mTOR inhibition (Fig. 4b). Importantly, this shared
set of translationally downregulated transcripts included
more than half of the transcripts that were translation-
ally upregulated in vehicle treated TSC2 depleted cells as
compared to controls, indicating an at least partial res-
cue of the molecular phenotype.
In accordance with our previous results, these tran-

scripts were essentially all implicated in protein synthesis
and mostly coding for ribosomal proteins. When looking
specifically at ribosomal transcripts showing induced
translation in untreated TSC2-deficient cell lines, it was
obvious that both rapamycin and AZD-8055 treatment
were able to correct elevated translation levels, implying
a reversal of the excessive protein synthesis (Fig. 4c and
Additional file 11: Table S8). In contrast, increased ex-
pression of genes related to angiogenesis and inflamma-
tion, both based on induced transcription with no
alterations at the level of translation, remained un-
affected by treatment with mTOR inhibitors. Accord-
ingly, the respective protein output remained high, even
in the drug-treated cells (Fig. 4d). Along these lines, we
found that rapamycin treatment also did not reduce
STAT3 phosphorylation levels in TSC2-deficient cells
(Fig. 4e). This suggests that disease mechanisms based
on transcriptional changes cannot be treated with
mTOR inhibitors even though the initial manifestation
of the pathophysiology was dependent on mTOR hyper-
function and future work will address the feasibility and
success of combinatorial treatment.
This analysis highlights the importance of monitoring

transcription and translation independently when inves-
tigating modulation of gene expression by drug treat-
ment. We could demonstrate that both inhibitors have a
similar effect and corrected excessive translation of ribo-
somal proteins with possible implications for reducing
hypertrophy of brain tumors in TSC patients. Nonethe-
less, the transcriptional signature of an inflamed state
and angiogenesis remained despite mTOR inhibitor
treatment. This shows that while mTOR was effectively
inhibited, the cellular pathophysiology was not fully

reversed and suggests use of additional combination
therapies tailored to the clinical picture of TSC patients
(Fig. 4f ).

Discussion
Applying comprehensive genomic analysis to our human
stem cell disease model enabled us to gain a deeper un-
derstanding of the TSC neuropathology. In TSC2-
deficient cultures we detect more cells expressing GFAP,
higher levels of STAT3 activation, and increased expres-
sion of inflammation associated genes. All these features
are indicative of aberrant glial differentiation [34, 36, 55]
and are also in agreement with reports on cortical tubers
and SEGAs from TSC patients [5, 17, 32, 39]. Import-
antly, it is now evident that astrocyte pathophysiology
can have a detrimental impact on neuronal function as
well [56, 57]. Interestingly, an increase in GFAP express-
ing astrocyte-like cells is equally observed in mouse
models for RASopathies including neurofibromatosis,
Costello syndrome, Noonan syndrome, and cardio-facio-
cutaneous syndrome [58–61]. This illustrates that glial
differentiation is frequently perturbed by excessive acti-
vation of growth signaling.
Mechanistically of interest for astrocyte dysfunction,

appear, in particular, the processes of neuroinflammation
and the altered expression of genes regulating glutamate
homoestasis. In addition, elevated angiogenic growth
factor levels in our neural model suggest enhanced
vascularization of brain lesions in analogy to the highly
vascularized angiofibromas and angiomyolipomas in
TSC patients [51]. As angiogenesis might be a prerequis-
ite for increased synthetic capacity and hypertrophic
growth of astrocytomas, it constitutes a possible target
for pharmacological intervention in TSC.
Interestingly, in contrast to angiogenic growth factors

as in our model of benign hypertrophic astrocytomas,
previous work on malignant prostate cancer highlighted
metastasis as most significant translationally induced
process [47], suggesting that the rerouting of the transla-
tional program upon mTOR hyperfunction can be con-
text dependent.
Thus, diseases that could be grouped as “mTORopa-

thies,” due to similar etiology, still present with vastly dif-
ferent phenotypes that require different treatment. As we
show in our TSC model, even for a single disease with
heterogeneous phenotypes, inhibition of only mTOR sig-
naling may not be sufficient to treat the entire spectrum
of pathology. An acquired aberrant cellular state can be
independent of mTOR signaling, therefore treatment
strategies then need to be tailored to the respective
phenotype.
Our stem cell model allows the profiling of molecular

alterations present during human embryonic develop-
ment and then the tracking of aberrant cellular
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differentiation towards a pathologic state. Further, such
a system is well suited to test new treatment strategies
as multiple assays can be performed on material derived
from the same source in a reproducible fashion using
isogenic control lines. These advantages may overcome
in many instances the inherent limitations of an in vitro
system. As diverse inter-cellular interactions within the
brain microenvironment are not exactly recreated, not
all disease manifestations may be recapitulated. Con-
versely, imperfect modeling of physiological conditions
can modify the phenotype making comparison to mouse
models and patient biopsies, as done here, necessary.
Overall, this first human stem cell model of TSC will
demonstrate itself to be a valuable system to develop the
effective treatment of cellular hyperplasias in TSC pa-
tients based on a better understanding of the disease
biology.

Conclusions
Insight into the molecular mechanisms underlying the
neuropathology of tuberous sclerosis assists a better
mechanistic understanding of the disease and enables de-
velopment of novel treatment options for the full
spectrum of clinical manifestations. By investigating our
genome-edited human neural stem cell model, we were
able to characterize the molecular pathophysiology by
profiling in depth the transcriptional as well as transla-
tional changes underlying the disease manifestations.
TSC2-deficient cells show the transcriptional signature of
an inflammatory response with implications for epilepto-
genesis in TSC patients. In addition, we found intensified
translation of ribosomal proteins, which increases biosyn-
thetic capacity in general and boosted production of an-
giogenic growth factors specifically. Treatment with
mTOR inhibitors reset translational dysfunction but was
incapable to correct transcription-based molecular path-
ologies. Importantly, in addition to the detailed descrip-
tion of the molecular pathology, we highlight novel entry
points for tailored pharmacological therapies that hold po-
tential to provide substantial benefits to patients suffering
from TSC in the future.
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