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Heterogeneity of cell fate is a hallmark of the responses of T lym-
phocytes to microbial infection. During an immune response to a 
microbial infection, responding naive T lymphocytes give rise to ter-
minal effector cells that mediate acute host defense and self-renewing 
memory cells that provide long-lived protection. Terminally differen-
tiated effector T cells are characterized by high expression of the killer 
lectin-like receptor KLRG1 and low expression of the interleukin  
7 receptor (IL-7R)1. Circulating memory T cells can be categorized 
into two subsets, central memory T cells (TCM cells) and effector 
memory T cells (TEM cells), distinguished by differences in their 
expression of homing and cytokine receptors such as L-selectin 
(CD62L) and CCR7, their proliferative capacity and their anatomical 
localization2. A third subset of memory cells, tissue-resident memory 
T cells (TRM cells), do not circulate but instead remain in peripheral 
tissues after pathogen clearance3.

Transcriptional profiling approaches have greatly advanced under-
standing of the molecular regulation of the fate specification of  
T lymphocytes4,5. Through comparison of the gene expression of CD8+ T  
lymphocytes during the course of microbial infections, such studies 
have identified many transcription factors and pathways with a role 
in the specification of terminal differentiation versus long-lived mem-
ory6. However, most studies have been conducted on bulk populations 
of cells, which masks the potential heterogeneity among individual 
cells. Published work has sought to address these limitations through 
the use of single-cell quantitative RT-PCR analysis to investigate  

the gene-expression patterns of single CD8+ T lymphocytes respond-
ing to bacterial infection in vivo7. Although dynamic changes in 
gene expression in individual cells during differentiation have been 
identified, pre-selection of genes already known to encode products 
involved in differentiation for analysis precluded the discovery of 
as-yet unknown genes and molecular pathways.

Single-cell RNA sequencing (scRNA-seq) has emerged as a power-
ful tool that has substantially advanced the understanding of diverse 
biological processes, including development8, the pathogenicity of the 
TH17 subset of helper T cells9, and innate immune responses10. In our 
study here, we applied a scRNA-seq approach to analyze transcriptome-
wide changes in individual CD8+ T cells as they differentiated in vivo. 
We observed unexpected and substantial transcriptional heterogene-
ity among lymphocytes that had undergone their first division, which 
revealed two distinct subpopulations distinguished by their expression 
of hundreds of genes encoding products involved in diverse biological 
functions, including cell-cycle regulation, metabolism, effector func-
tion and fate specification. The expression of many transcription factors 
that have been linked to effector and memory cell differentiation, along 
with chromatin regulators, was markedly upregulated in cells differ-
entiating along the terminal effector pathway and was extinguished by 
the peak of the adaptive immune response. That initial transcriptional 
program was subsequently refined by selective epigenetic repression of 
molecular determinants associated with memory-cell differentiation. 
In contrast, induction of the memory program seemed to be associated 
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During microbial infection, responding CD8+ T lymphocytes differentiate into heterogeneous subsets that together provide 
immediate and durable protection. To elucidate the dynamic transcriptional changes that underlie this process, we applied a 
single-cell RNA-sequencing approach and analyzed individual CD8+ T lymphocytes sequentially throughout the course of a viral 
infection in vivo. Our analyses revealed a striking transcriptional divergence among cells that had undergone their first division 
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with more nuanced alterations in the expression levels of a few specific 
genes. Together these findings provide unexpected new insights into 
the tightly coupled transcriptional and epigenetic mechanisms under-
lying the fate specification of CD8+ T lymphocytes and highlight the 
power and necessity of single-cell approaches.

RESULTS
scRNA-seq of CD8+ T cells differentiating in vivo
To investigate transcriptional changes in individual CD8+ T lym-
phocytes responding to microbial infection in vivo11, we adoptively 
transferred P14 CD8+ T lymphocytes, which have transgenic expres-
sion of T cell antigen receptors that recognize an immunodominant 
epitope of lymphocytic choriomeningitis virus (LCMV), into congenic 
wild-type recipient mice 1 d before infection of the host mice with 
the Armstrong strain of LCMV. On days 2, 4 and 7 after infection,  
activated P14 CD8+ T lymphocytes (CD44hi) were enriched from 

spleens of infected mice by a magnetic-bead-based approach 
and were sorted by flow cytometry. On day 42 of infection, TCM 
(CD44hiCD62Lhi) cells and TEM (CD44hiCD62Llo) cells were isolated 
in a similar way; naive P14 CD8+ T cells (CD44loCD62Lhi) were also 
included in our analysis. For certain time points (days 2 and 4 after 
infection), large numbers of P14 cells were adoptively transferred 
into recipient mice4,7,11 to enable the isolation of sufficient numbers 
of cells for scRNA-seq analysis; transfer of a large number of cells 
can alter the magnitude and kinetics of the immune response12 and 
therefore represents a caveat of this study.

We performed PCR amplification of full-length, polyadenylated 
transcripts13, followed by preparation and sequencing of single-cell 
cDNA libraries (Fig. 1a). 10 × 106 to 20 × 106 reads per cell were 
achieved (Supplementary Fig. 1a), with slight variations among 
populations, with 60–90% uniquely mapped reads (Supplementary 
Fig. 1b,c). At least two technical replicates for each cell population 
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Figure 1 scRNA-seq analysis of CD8+ T lymphocytes responding to viral infection. (a) Experimental and analytical approaches. SP, spleen; LN, lymph 
nodes. (b) Single-cell expression of selected genes (right margin) encoding products associated with the differentiation of CD8+ T cells, by cells 
obtained from the spleen of wild-type recipient mice as in a (top row), with sorting before and on days 2, 4, 7 and 42 after infection for analysis of 
naive cells, division 1 cells, day 4 cells, day 7 cells, TCM cells and TEM cells (colors (above plot) match those in c); left margin (brackets), hierarchical 
clustering. (c) Expression of selected genes among those in b (vertical axes) by cells as in b (key), presented as transcripts per million reads (TPM) in 
‘violin plots’. Data are representative of at least two experiments per time point.
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were assessed on separate sequencing plates to ensure reproducibility 
and an absence of batch effects (Supplementary Fig. 1d–f). After 
undertaking these quality-control measures, we included 288 single-
cell libraries separated into 224 unique sequencing samples and 32 
pairs of duplicates in further in-depth analyses.

We detected over 6,000 genes with a mean expression of at least 
1 transcript per million reads (TPM) per cell. Assessment at the 
single-cell level of a subset of genes encoding products previously 
linked to CD8+ T cell differentiation by analyses of bulk populations  

suggested patterns of expression consistent with their previously 
assigned roles in this process. For example, genes encoding products 
associated with the differentiation and function of effector cells, such 
as Batf, Id2 and Gzmb, had high expression in cells isolated at days 
4 and 7 after infection (Fig. 1b,c), time points at which terminally 
differentiated effector cells are known to predominate. Conversely, 
genes encoding memory-associated products, such as Tcf7 and Il7r, 
had high expression in TCM cells and TEM cells (Fig. 1b,c). These 
findings demonstrated that the expression of genes previously  
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described as encoding effector- and memory-associated products 
were readily detected in the expected lymphocyte subsets by a  
single-cell approach.

Notably, our single-cell analysis also revealed patterns of gene 
expression that were not previously discernable by analyses of bulk 
populations. For example, heterogeneous expression of many genes, 
including Tbx21, Gzmb, Id3, Il7r, Il2ra, Sell, Eomes and Irf4, was 
observed among individual cells derived from the same time point 
that would otherwise have been interpreted as identical by analyses 
of bulk populations (Fig. 1b,c). Thus, our single-cell transcriptomic 
analysis captured the substantial heterogeneity in gene expression 
exhibited by individual CD8+ T lymphocytes throughout their  
differentiation in response to microbial infection.

Molecular heterogeneity among division 1 CD8+ T cells
We performed unsupervised tSNE (‘t-distributed stochastic neigh-
borhood embedding’) clustering analysis to visualize, in an unbiased 
manner, the gene-expression patterns (Fig. 2a) of individual CD8+ T  
lymphocytes isolated at all time points after infection (as in Fig. 1). 
In this tSNE analysis, naive cells, TCM cells and TEM cells each formed 
distinct clusters (Fig. 2a), suggestive of unique molecular homoge-
neity within each population (Supplementary Table 1). Similarly, 
most cells at day 4 and day 7 formed their own separate clusters; 
however, a few cells from each time point grouped near the naive cell 
and TCM cell populations (Fig. 2a). Strikingly, unsupervised tSNE 
analysis revealed two distinct subpopulations among single CD8+ T 
lymphocytes that had undergone their first cell division (division 1) 
(Fig. 2a). We emphasize that the division 1 cells were isolated on the 
basis of their dilution of the division-tracking dye CFSE (the second 
CFSE peak) and not by their phenotypic expression of cell-surface 
markers, other than by high expression of the activation marker CD44 
to ensure that all sorted cells had been activated in vivo. One subpopu-
lation of division 1 cells seemed to be most similar to day 4 and day 
7 effector CD8+ T lymphocytes, whereas the other subpopulation of 
division 1 cells seemed to be most similar to TCM cells and naive cells 
(Fig. 2a). We provisionally designated these two division 1 (Div1) 
subpopulations ‘Div1TE’ and ‘Div1MEM’ on the basis of their simi-
larities to terminal effector-cell populations (‘TE’) and memory-cell 
populations (‘MEM’), respectively.

Gene-expression analysis revealed that differences in the expres-
sion of 930 genes distinguished Div1TE cells from Div1MEM cells, with 
903 genes having higher expression in Div1TE cells than in Div1MEM 
cells and 27 genes having higher expression in Div1MEM cells than 
in Div1TE cells (Fig. 2b and Supplementary Table 2). Gene-ontol-
ogy analysis revealed that the set of genes upregulated by Div1TE cells 
showed enrichment for those encoding products involved in diverse 
molecular and cellular processes involving transcription, protein trans-
port, ribosome biogenesis, cell division and mRNA processing, among 
others (Supplementary Table 3). Moreover, Div1TE cells had higher 
expression of genes encoding transcription factors, cytokine receptors 
and signaling molecules previously associated with the differentiation 
and metabolic reprogramming of terminal effector cells6 (Fig. 2c).

In contrast, Div1MEM cells had higher expression of genes encod-
ing several factors that have been previously associated with memory 
lymphocytes6, including Il7r, S1pr1 and Klf2 (Fig. 2d), in addition 
to genes encoding molecules not previously associated with such 
cells, including Btg1, which encodes an anti-proliferative molecule14 
(Supplementary Table 2). Notably, however, many genes encoding 
transcription factors associated with memory lymphocytes either had 
similar expression in Div1TE cells and Div1MEM cells (Lef1, Bach2 
(ref. 15) and Tcf7) (Fig. 2e) or had higher expression in Div1TE cells 
than in Div1MEM cells (Eomes, Id3 and Foxo1) (Fig. 2c). Together 
these data demonstrated that CD8+ T lymphocytes that had under-
gone their first cell division exhibited considerable transcriptional  
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Figure 3 Generation and application of ‘early-state’ and ‘fate’ classifiers 
to predict the identity of cells in intermediate states of differentiation. 
(a,c) Classifier separation of Div1MEM cells (blue; n = 24 cells) from 
Div1TE cells (red; n = 36 cells) (a) and day 7 effector cells (yellow;  
n = 48 cells) from total memory cells (teal; n = 96 cells), which include 
TCM cells (n = 48) and TEM cells (n = 48) (c) (all cells obtained as in  
Fig. 1). (b,d) Cross-validated scores of division 1 CD8+ T lymphocytes  
(b) and day 7 effector and memory CD8+ T lymphocytes (d) on which  
the early-state classifier (b) and fate classifier (d) were trained; results  
are presented as kernel density histograms. (e) Application of early-
state and fate classifiers to predict the fate of individual day 4 CD8+ 
T lymphocytes (n = 34); black and purple dashed lines indicate the 
boundary between predicted memory-like or effector-like day 4 cells.  
(f) Prediction analysis of individual day 4 CD8+ T lymphocytes as assessed 
in e, presented as the memory-score distribution (from 0 (effector) to 
1 (memory)) of the early-state classifier (horizontal axis) versus that of 
final-fate classifier (vertical axis): dashed black and purple lines, fate 
classifier’s ‘decision boundary’ between memory cells and day 7 effector 
cells, and orange line, early-state classifier’s ‘decision boundary’ between 
Div1MEM cells and Div1TE cells (orange shaded area, 95% confidence 
interval, with the assumption of Gaussian error); both sets of lines are 
‘stylized estimates’ of the real boundaries, which are complex ‘piecewise-
linear functions’ and can be much more furrowed. Pearson correlation 
(linear), r = 0.78 (P = 4.8 × 10−8); Spearman correlation (monotonic),  
r = 0.71 (P = 2.2 × 10−6). Each symbol (a,c,e,f) represents an individual 
cell. Data are representative of two experiments.
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heterogeneity that was not previously discernible7, with the vast 
majority of differentially expressed genes upregulated by Div1TE cells, 
including many transcripts encoding products previously associated 
with memory lymphocytes.

Identification of cells in intermediate stages of differentiation
The observation that two distinct subpopulations of cells that had 
undergone their first division in vivo could be discerned by virtue of 
disparate gene-expression patterns suggested that these two subpopu-
lations might represent cells that had already begun to diverge in fate. 
We sought to determine whether we could systematically predict the 
identity of cells in subsequent, intermediate stages of differentiation  
(analyzing cells obtained as in Fig. 1). We hypothesized that using 

two distinct supervised classifiers, one trained on the two division 
1 subpopulations (‘early-state’ classifier; Fig. 3a,b) and the other 
trained on true memory cell populations (TCM cells and TEM cells) 
and terminal effector-cell populations (‘fate’ classifier; Fig. 3c,d),  
would enable us to identify cells in intermediate states of differentia-
tion as they progressed toward a terminally differentiated fate versus 
a long-lived memory fate.

Using both the early-state classifier and fate classifier, we then 
developed a ‘future-past’ computational approach to independently 
predict the identity of cells in intermediate states of differentia-
tion (Fig. 3e). The early-state classifier, trained on division 1 cells,  
was deployed into the ‘future’ on day 4 cells at intermediate states of 
differentiation, whereas the fate classifier, trained on day 7 effector 
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Figure 4 Identification of putative regulators of the differentiation of CD8+ T lymphocytes. (a) Overlap (middle) of genes expressed differentially by 
Div1TE cells relative to their expression by Div1MEM cells (left) and those expressed differentially by terminally differentiated effector T cells (TTE cells) 
relative to their expression by memory T cells (TMEM cells) (right) (all cells obtained as in Fig. 1). (b) Plotting of the difference in expression of genes 
expressed differentially by effector cells versus memory cells (as in a; TTE/TMEM) against that of genes expressed differentially by Div1TE cells versus 
Div1MEM cells (Div1TE/Div1MEM). Pearson correlation, r = 0.78 (P = 3.6 × 10−13). Each symbol represents an individual gene. (c) Differential expression 
of 89 common genes (one per row) by all CD8+ T lymphocyte populations of naive cells (gray), Div1TE cells (red), Div1MEM cells (blue), day 4 cells 
(orange), day 7 cells (yellow), TCM cells (green) and TEM cells (purple) (one cell per column); left margin (brackets), hierarchical clustering. (d) Temporal 
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areas, 95% confidence interval (bootstrapped from all possible single-cell expression trajectories). Data are representative of two experiments.
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cells and day 40 memory cells, was deployed into the ‘past’ to ana-
lyze the same day 4 cells. Notably, the early-state classifier and fate 
classifier agreed on the identity of intermediate cells (Fig. 3f), yet 
they used largely non-overlapping sets of genes for the prediction 
of pre-terminal effector or pre-memory cell states (Supplementary  
Tables 4 and 5). Thus, intermediate states of differentiation could 
be readily predicted through the use of supervised binary classifiers 
trained on the preceding or subsequent states.

Identification of regulators of CD8+ T cell differentiation
We next sought to identify previously unknown regulators of CD8+ T 
cell differentiation by searching for commonality between the set of 
genes expressed differentially by Div1TE cells relative to their expres-
sion in Div1MEM cells and by terminal effector cells relative to their 
expression in memory cells (analyzing cells obtained as in Fig. 1). 
Among the set of 930 genes expressed differentially by Div1TE cells 
versus Div1MEM cells (Supplementary Table 2) and the set of 834 
genes expressed differentially by terminal effector cells versus mem-
ory cells (Supplementary Table 6), only 115 genes were shared by 
both sets (Fig. 4a,b). We next selected genes common only to Div1TE 
cells and effector cells or common only to Div1MEM cells and memory 
cells to identify genes encoding regulators of terminal-effector-cell 
differentiation or memory-cell differentiation, respectively.

The analysis described above yielded 89 putative regulators of CD8+ T  
cell fate specification (Supplementary Table 7). We visualized their 
temporal expression patterns by clustering single-cell expression of 
the genes encoding these putative regulators across all time points 
(Fig. 4c). Because application of the ‘future-past’ binary classifiers 
enabled us to predict the identity of cells at intermediate time points, 
we were able to infer pathways of terminal-effector-cell or memory-
cell differentiation on the basis of the expression of genes encoding 
these putative regulators in day 4 cells classified as being in either a 
pre-memory state or a pre-effector state of differentiation (Fig. 4d 
and Supplementary Fig. 2). We observed that genes expressed in 
cells differentiating along the terminal-effector-cell pathway tended 
to exhibit a substantial increase in expression at the first division, 
followed by a rapid decrease in expression (Fig. 4d); this raised the 
possibility of epigenetic repression in differentiating effector cells. 
We selected Ezh2, which encodes a catalytic subunit of the Polycomb 
complex PRC2 that mediates gene repression by mediating trimeth-
ylation of histone H3 at Lys27 (H3K27me3)16, for further analysis 
and functional validation, given the results of published studies  

suggesting a critical role for Ezh2 in the differentiation and function 
of CD4+ T cells17–19.

Ezh2, along with genes encoding other components of the PRC2 
(Eed, Suz12 and Set), had higher expression in Div1TE cells than in 
Div1MEM cells (Fig. 5a), suggestive of a role for Ezh2 in regulating the 
differentiation of terminal effector cells. Consistent with that find-
ing, we observed that CD8+ T cells that had undergone their first  
division exhibited a bimodal pattern in their expression of Ezh2 
protein (Fig. 5b), with high expression and low expression in 
putative ‘pre-effector’ IL-2RαhiCD62Llo cells and ‘pre-memory’  
IL-2RαloCD62Lhi cells, respectively7 (Fig. 5c). Moreover, the kinetics 
of Ezh2 expression during differentiation at the protein level paral-
leled that at the mRNA level (Fig. 5d).

We next generated Ezh2fl/flCd4Cre P14 mice (in which loxP-flanked 
Ezh2 alleles (Ezh2fl/fl) are deleted by Cre recombinase expressed 
from the T cell–specific Cd4 promoter) and adoptively transferred 
Ezh2-deficient (Ezh2fl/flCd4Cre) or control (Ezh2fl/flCd4+/+) P14 
(CD45.1+) CD8+ T cells (Supplementary Fig. 3a) into wild-type 
(CD45.2+) recipient mice that we subsequently infected with LCMV-
Armstrong. Ezh2-deficient CD8+ T cells were much less abundant 
by days 5 and 7 after infection than were control cells (Fig. 5e and 
Supplementary Fig. 3b) and exhibited an impaired ability to secrete 
inflammatory cytokines relative to that of control cells (Fig. 5f,g). 
Notably, the absence of effector cells (Fig. 5e) was not due to a failure 
of Ezh2-deficient CD8+ T cells to undergo activation or proliferation 
(Supplementary Fig. 3c,d). However, Ezh2 deficiency was associ-
ated with increased apoptosis by day 5 after infection (Fig. 5h) and 
‘preferentially’ affected early ‘effector-like’ cells, but not ‘memory-
like’ cells, in an in vitro model of CD8+ T cell differentiation20,21  
(Fig. 5i–k and Supplementary Figs. 3e and 4). Together these find-
ings suggested a critical role for Ezh2 in regulating the differentiation 
of terminal effector cells.

Epigenetic silencing of memory-associated determinants
Because the PRC2 complex mediates transcriptional repression, we 
hypothesized that the high expression of Ezh2 in Div1TE cells would 
catalyze repressive H3K27me3 marks on a set of key genes and thereby 
promote the differentiation of terminal effector cells. Focusing on 
the ~6,000 genes detected by our scRNA-seq analysis, we mapped 
H3K27me3 peaks derived from the analysis of naive, terminal effector 
(KLRG1hiIL-7Rαlo) CD8+ T cells and total memory (CD44hi) CD8+ 
T cells by chromatin immunoprecipitation followed by sequencing 

Figure 5 Ezh2 regulates effector CD8+ T lymphocyte differentiation. (a) Expression of Ezh2, Eed, Suz12 and Set (which encode components of the 
PRC2 complex) in single CD8+ T lymphocytes (obtained as in Fig. 1b) separated as naive cells, Div1MEM cells, Div1TE cells, day 4 cells, day 7 cells, TCM 
cells and TEM cells (key) (presented as in Fig. 1c). (b) Flow cytometry of gated CD8+ T lymphocytes (as in a) that had undergone their first cell division 
in vivo. Numbers adjacent to outlined areas indicate percent Ezh2lo cells (left) or Ezh2hi cells (right) among the CD8+ T lymphocytes. (c) Flow cytometry 
of gated division 1 (Div1) CD8+ IL-2RαhiCD62Llo or IL-2RαloCD62Lhi cells (key), assessing Ezh2 expression. (d) Flow cytometry (left) of naive cells, 
division 1 cells (gated on IL-2Rαlo or IL-2Rαhi cells), day 4 cells, day 7 cells, TCM cells and TEM cells (above plots) among CD8+ T lymphocytes (as in a); 
right, summary of results at left. Numbers adjacent to outlined areas (left) indicate mean fluorescence intensity of Ezh2+ events. (e) Absolute number 
of gated Ezh2fl/flCd4+/+ (WT) or Ezh2fl/flCd4Cre (KO) P14 CD8+ T cells in the spleen of wild-type (CD45.2+) recipient mice given adoptive transfer of 
Ezh2fl/flCd4+/+ or Ezh2fl/flCd4Cre P14 (CD45.1+) CD8+ T cells, followed by infection of the host mice with LCMV-Armstrong and analysis of cells 7 d 
after infection. (f,g) Flow cytometry of cells as in e 7 d after infection, showing the frequency of cells (left) with intracellular expression of IFN-γ (f) or 
TNF (g), among CD45.1+ (donor) CD8+ cells, and the mean fluorescence intensity (right) of intracellular IFN-γ (f) or TNF (g). (h) Flow cytometry (left) of 
gated CD45.1+ (P14) CD8+ cells as in e, analyzing staining of the DNA-intercalating dye 7-AAD and the apoptosis marker annexin V (AnnV) at 3 or 5 d 
after infection (left margin); right, summary of results at left. Numbers adjacent to outlined areas (left) indicate percent cells in each. (i) Flow cytometry 
(as in h; left) of gated IL-2RαhiCD62Llo and IL-2RαloCD62Lhi cells among cells as in e, assessed after 3 d of in vitro culture with IL-2 (top) or IL-15 
(bottom); right, summary of results at left. (j) Flow cytometry (left) of division 1, day 4 and day 7 CD8+ T cells as in e; right, summary of results at left. 
Numbers adjacent to outlined areas (left) indicate percent CD62Lhi cells among CD8+ T cells. (k) Flow cytometry (left) of cells treated as in i; right, 
summary of results at left. Numbers in quadrants (left) indicate percent CD62LloIL-2Rαhi cells (bottom right) or IL-2RαloCD62Lhi cells (top left). Each 
symbol (d–k) represents an individual mouse; small horizontal lines indicate the mean (+ s.e.m.). NS, not significant (P < 0.05); *P ≥ 0.05, **P < 0.01 
and *** P < 0.001 (Student’s two-tailed t-test). Data are representative of two experiments (a), two experiments with four (b,c) or three (d) mice in each 
(b–d) or four (f–h,k) or three (i) mice per genotype in each (f–i,k), or are pooled from two independent experiments (e,j). 



©
 2

01
7 

N
at

u
re

 A
m

er
ic

a,
 In

c.
, p

ar
t 

o
f 

S
p

ri
n

g
er

 N
at

u
re

. A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

nature immunology  aDVaNCE ONLINE PUBLICaTION �

A rt i c l e s

(ChIP-seq)22. The promoter regions in terminal effector cells exhib-
ited significant gains in H3K27me3 coverage that correlated with 
lower gene expression, whereas those in memory cells exhibited 
considerable losses in H3K27me3 coverage, relative to such coverage 

in naive cells (Fig. 6a–c and Supplementary Tables 8 and 9): among 
1,234 genes with lower expression in terminal effector cells than in 
naive cells, 97 (7.86%) were marked by H3K27me3; among 627 genes 
with lower expression in memory cells than in naive cells, 11 (1.75%) 
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were marked by H3K27me3. This suggested that epigenetic silencing 
might be more crucial for the differentiation of terminal effector cells 
than for that of memory cells.

We next investigated binding of Ezh2 and H3K27me3 marks in 
differentiating CD8+ T cells by ChIP-seq and found 1,564 genes 
bound by Ezh2 and 261 genes marked by H3K27me3 (Fig. 6d and 
Supplementary Table 10). Gene-ontology analysis revealed that the 
set of genes targeted by Ezh2 showed enrichment for those encod-
ing products involved in processes involving transcriptional regula-
tion, cytoskeletal protein binding, phosphoinositide binding, Wnt 
receptor signaling, and apoptosis (relative to their abundance in sets 
of genes encoding products involved in other biological processes) 
(Supplementary Table 11). We observed that among cells obtained 
as described initially above (Fig. 1), genes with expression that was 

lower in day 4 cells than in Div1TE cells were more likely to exhibit 
Ezh2 binding than those with higher expression in day 4 cells than 
in Div1TE cells (Fig. 6e). Comparison of the expression patterns of 
H3K27me3-marked and unmarked genes during terminal-effector-
cell and memory-cell differentiation revealed that H3K27me3-marked 
genes tended to exhibit more repression during the differentiation of 
terminal effector cells (as indicated by shifting of distribution; Fig. 7a,  
top, and Supplementary Fig. 5a) than during the differentiation of 
memory cells (as indicated by no shifting of distribution; Fig. 7a, 
bottom, and Supplementary Fig. 5b,c). These findings raised the 
possibility that the same set of genes were being selectively repressed 
during the differentiation of terminal effector cells but not during the 
differentiation of memory cells, due in part to differential expression 
of Ezh2 in cells progressing along these disparate pathways.

We investigated that possibility by analyzing a subset of Ezh2 tar-
gets whose expression decreased during the differentiation of effector 
cells but not during the differentiation of memory cells. This analysis 
revealed that many genes encoding products that have been linked 
to the differentiation of memory cells but not to the differentiation 
of effector cells exhibited greater association with Ezh2 than that of 
the input DNA control (Fig. 7b and Supplementary Table 10). These 
Ezh2 targets included genes encoding memory-associated transcrip-
tion factors, such as Tcf7 and Eomes; molecules that mediate TGF-β 
signaling, such as Smad2, whose product has been linked to CD8+  
T cell fate ‘decisions’23–25; metabolic regulators, such as Bcat1, which 
encodes a branched-chain aminotransferase isoenzyme26; and factors 
that control T cell survival and homing, such as Klf2 (refs. 27–29); 
as well as Opa1, which encodes a regulator of mitochondrial fusion 
with a critical role in differentiating memory CD8+ T lymphocytes30 
(Fig. 7b and Supplementary Table 10). Several of these genes, such 
as Foxo1 and Tcf7, underwent a rapid decrease in expression follow-
ing the first division; others, like Eomes and Id3, underwent an initial 
increase at the first division followed by a rapid decrease (Fig. 7c); 
this suggested a possible role for the products of these memory-cell-
associated genes in the differentiation of effector cells. In contrast, 
analysis of those same genes in differentiating memory cells revealed 
a distinct expression pattern characterized by a modest increase at the 
first division followed by stable or increased expression as the cells 
became mature TCM cells or TEM cells (Fig. 7c). A similar pattern of 
expression was observed for memory-cell-associated genes, such as 
Il7r, Lef1 and Bcl2, that were not targeted by Ezh2 (Fig. 7d). Finally, 
we observed that Ezh2 deficiency was associated with diminished 
H3K27me3 coverage and increased expression of mRNA from many 
genes, including a number of memory-cell-associated genes, such 
as Eomes, Tcf7 and Klf2 (Fig. 7e–h, Supplementary Figs. 6–8 and 
Supplementary Tables 12 and 13), consistent with the proposal of 
a role for H3K27me3-mediated transcriptional repression by Ezh2. 
Thus, the unique expression patterns of memory-cell-associated genes 
in differentiating terminal effector cells and memory cells might have 
resulted in part from the presence or absence of epigenetic repression 
owing to distinct levels of Ezh2 expression in these cells.

In parallel with our analysis of memory-cell-associated genes, we 
also assessed the expression patterns of genes encoding products 
previously associated with effector-cell differentiation, including 
those encoding transcription factors (Batf, Irf4 and Tbx21), signal-
ing molecules (Il2ra and Akt1) and metabolic regulators (Hif1a and 
Myc), along inferred terminal-effector-cell or memory-cell pathways. 
The expression patterns of these genes in differentiating effector 
cells resembled those of memory-cell-associated genes targeted by 
Ezh2, with a substantial early increase at the first division followed 
by a rapid loss by day 4 after infection (Fig. 7i); in contrast, these 
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Figure 6 Increased epigenetic repression of genes expressed during the 
differentiation of terminal effector cells. (a) H3K27me3 peak coverage in 
various genes (rows) at various distances (columns) from the transcription 
start site (TSS), in naive cells versus terminal effector cells (left) or in 
naive cells versus memory cells (right); results are presented (key) as 
coverage gains (red) or losses (blue) as naive cells differentiate into those 
fates. (b) Peak H3K27me3 coverage around the transcription start site for 
the 6,000 genes detected in the scRNA-seq data set (Fig. 1), presented 
as quantification of covered regions (left vertical axis; black) or proportion 
of coverage (right vertical axis; gray). (c) H3K27me3 coverage of genes 
with lower expression in effector cells (Eff) or memory cells (Mem) than in 
naive cells. (d) ChIP analysis of the binding of Ezh2 or RNA polymerase 
II (PolII) or both (key) at proximal promoter regions (from −1 kb to +1 
kb around the TSS) of the 6,000 genes detected by scRNA-seq (Fig. 1). 
(e) Frequency of genes with a change in TPM among those with lower 
expression (Loss; 1,492 genes) or higher expression (Gain; 219 genes) in 
day 4 cells than in Div1TE cells (horizontal axis; all cells obtained as in 
Fig. 1), with (Ezh2 bound) or without (Unbound) binding of Ezh2 (key).  
*P < 0.01 and **P < 0.001 (Fisher’s exact test). Data are representative 
of three experiments (a–c) or two experiments (d,e).
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Figure 7 Ezh2 mediates the effector differentiation of CD8+ T lymphocytes through epigenetic repression. (a) Expression (averaged normalized TPM 
values) of genes encoding products in the three inferred differentiation pathways (effector, TCM or TEM; inferred as in Fig. 4d), classified as genes 
marked (Targeted) or not marked (Not targeted) by H3K27me3 (key), assessed in cells obtained as in Figure 1 (horizontal axes). (b) ChIP-seq analysis 
of the binding of Ezh2 and H3K27me3 at Eomes, Foxo1, Klf2 and Tcf7 (gray indicates input); arrowheads indicate binding peaks for Ezh2 (red) or 
H3K27me3 (blue). (c,d) Temporal expression patterns (time relative to infection as in Fig. 1) of selected memory-cell-associated genes encoding 
products linked to CD8+ T cell differentiation, targeted by Ezh2 (c) or not (d), in inferred paths of differentiation for effector cells, TCM cells and TEM 
cells (key); shaded areas, 95% confidence interval (bootstrapped from all possible single-cell expression trajectories). (e) H3K27me3 coverage (key) 
for individual genes in Ezh2fl/flCd4+/+ (WT) and Ezh2fl/flCd4Cre (KO) cells. (f) H3K27me3 coverage in Ezh2fl/flCd4+/+ and Ezh2fl/flCd4Cre cells (two 
biologic replicates each (1, 2)), presented as quantification of H3K27me3 binding peaks (left) or regions (right). (g) H3K27me3 coverage of memory-
cell-associated genes targeted by Ezh2, in Ezh2fl/flCd4Cre CD8+ T cells relative to that in Ezh2fl/flCd4+/+ CD8+ T cells (KO/WT). (h) H3K27me3 coverage 
(ratio as in g) plotted against RNA expression (of all genes) in Ezh2fl/flCd4Cre CD8+ T cells relative to that in Ezh2fl/flCd4+/+ CD8+ T cells. (i) Temporal 
expression patterns (as in c) of selected genes associated with effector differentiation. Data are representative of two experiments.
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same genes were expressed at much lower levels during the proc-
ess of memory differentiation (Fig. 7i). The observation that these 
effector-cell-associated genes were not targeted by Ezh2 or marked 
by H3K27me3 suggested that the regulation of these genes during 
differentiation might occur by alternative mechanisms. Together 
these findings suggested a model for the differentiation of terminal 
effector cells that is initiated by a rapid burst of transcriptional activ-
ity that includes the upregulation of genes encoding products that 
promote the effector and memory fates, as well as the upregulation  
of chromatin regulators, followed by subsequent epigenetic repression 
of the memory program.

DISCUSSION
In the present study, we sought to discover previously unknown 
molecular determinants and gain new insights into the molecular 
regulation of specification of CD8+ T lymphocyte fates by perform-
ing scRNA-seq of antigen-specific CD8+ T cells derived sequentially 
throughout the course of a viral infection in vivo. Our analyses 
revealed a striking transcriptional divergence among cells that had 
undergone their first division, with hundreds of genes expressed 
differentially by the two subpopulations identified, which we pro-
visionally called ‘Div1TE cells’ and ‘Div1MEM cells’. The vast major-
ity (97%) of these genes had higher expression by Div1TE cells than 
by Div1MEM cells and encoded products with diverse functions that 
spanned cell-cycle regulation, transcription, translation, metabolism 
and differentiation. Unexpectedly, genes encoding transcription fac-
tors linked to the differentiation of both effector cells and memory 
cells were substantially upregulated in Div1TE cells relative to their 
expression in Div1MEM cells, which suggested that memory-cell- 
associated transcription factors might have a transient but impor-
tant role in the differentiation of terminal effector cells. Moreover, 
the expression patterns of genes expressed differentially by Div1TE 
cells versus Div1MEM cells were unique, in that the genes with higher 
expression by Div1TE cells had largely undetectable expression in 
Div1MEM cells. In contrast, the genes with higher expression by 
Div1MEM cells were also expressed by Div1TE cells, albeit with slightly 
lower expression. These dichotomous patterns suggested that the ear-
liest steps in the differentiation of terminal effector cells were asso-
ciated with a profound transcriptional burst involving considerable 
upregulation of hundreds of genes, whereas induction of the memory 
program might be associated with more nuanced alterations in the 
expression of a few specific genes.

On the basis of their molecular similarities with effector and mem-
ory cells, we hypothesized that Div1TE and Div1MEM cells represented 
early differentiation states of these cellular subsets. The application of 
‘future-past’ binary classifiers enabled us to predict the identity of cells 
at intermediate time points and thereby infer pathways for the dif-
ferentiation of terminal effector cells or memory cells. Visualization 
of the ‘trajectories’ of individual genes suggested patterns of expres-
sion in differentiating effector cells that were distinct from those in 
memory cells, as well as in differentiating TCM cells versus TEM cells. 
Although it has been appreciated that TCM cells and TEM cells are 
molecularly distinct31,32, the ontology of these cells remains poorly 
understood33,34. Our data suggest the possibility that Div1MEM cells 
might represent a common progenitor of both circulating memory 
subsets, but it remains unknown when differentiating TCM cells and 
TEM cells diverge in fate. Future studies with more precise time points 
should probably provide additional insight into this question and 
might also elucidate whether TRM cells are derived from Div1MEM 
cells, as it has been shown that TRM cells and TCM cells share a  
common clonal origin35.

Which factors control the substantial transcriptional divergence 
observed following the first cell division remains an open question. 
One contributing factor could be asymmetric division, an evolution-
arily conserved mechanism that enables activated T lymphocytes to 
apportion certain determinants unequally to daughter cells during 
mitosis11. Asymmetric segregation of factors such as the cytokine 
receptors IL-2Rα and IFN-γR during mitosis7,11,36, for example, 
could promote signaling via the cytokines IL-2 and IFN-γ and result 
in the increased expression of Il2ra, Stat5a and Tbx21 observed in 
Div1TE cells. Increased expression of genes encoding mediators of 
metabolic programming in Div1TE cells, moreover, would be con-
sistent with the asymmetric mitotic distribution of the Myc, mTOR 
and phosphatidylinositol-3-OH kinase signaling pathways that has 
been reported37–39. Finally, the demonstration that activated CD8+  
T cells deficient in the atypical protein kinase PKC, a central regulator 
of asymmetric division, give rise to daughter cells with an effector-
like transcriptional signature40 supports the possibility of a role for 
asymmetric division in mediating the transcriptional heterogeneity 
in division 1 cells observed in the our study here.

We sought to identify previously unknown candidate regulators of 
differentiation by searching for commonality between the set of genes 
expressed differentially by Div1MEM cells relative to their expres-
sion in Div1TE cells and those expressed differentially by terminal- 
effector-cell subsets relative to their expression in memory-cell sub-
sets. This approach yielded 89 candidate molecular determinants 
whose functions spanned regulation of proliferation, chromatin 
structure, transcription, and energy metabolism. We showed that 
one candidate, Ezh2, encodes a product with a critical role in the 
differentiation of terminal effector cells in vivo, which demonstrated 
the success of our experimental and computational approaches in 
identifying functionally important regulators of the differentiation of 
CD8+ T cells. Consistent with our findings, Ezh2 has been shown to 
regulate the polyfunctionality and survival of human effector CD8+ 
T cells through H3K27me3-mediated repression of genes encoding 
pro-apoptotic molecules, as well as those encoding components of 
the Notch signaling pathway41.

A role for epigenetic regulation of determination of the CD8+ T cell 
fate has been increasingly appreciated, with published studies show-
ing the importance of DNA methylation and histone modifications 
in this process42–44. Published studies have investigated the overall 
epigenetic landscapes of naive, effector and memory CD8+ T cells 
and have demonstrated substantial differences among cell subsets 
and during differentiation in their deposition of permissive H3K4me3 
marks and repressive H3K27me3 marks45,46. Our study has extended 
those observations by demonstrating that transcription factors that 
promote alternative fates might be targeted differentially by Ezh2 in 
a T cell state–specific manner. In differentiating terminal effector 
cells, transcription factors associated with the alternative memory fate 
were selectively targeted by Ezh2. These findings suggested that the 
repression of memory-cell-associated genes might serve to enforce 
the terminal-effector-cell-differentiation program set into motion 
by effector-cell-associated genes. However, it remains possible that 
repressed memory-cell-associated genes might remain in a poised, 
bivalent (H3K4me3+H3K27me3+) state45,46 and might thereby confer 
on effector cells a certain degree of plasticity.

In summary, our data suggest a model for the differentiation of ter-
minal effector cells initiated by a rapid and profound transcriptional 
burst and refined by epigenetic silencing of transcripts associated 
with memory lymphocytes. In contrast, induction of the memory 
transcriptional program seemed to occur in a distinct subpopula-
tion of differentiating lymphocytes and was associated with more 
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nuanced, gradual increases in the expression of a few specific genes. 
Together our findings suggest that closely linked transcriptional and 
epigenetic mechanisms together control specification of the CD8+  
T lymphocyte fate and underscore the power and necessity of single-cell  
approaches in future studies.

METhODS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METhODS
Mice. All animal work was approved by the Institutional Animal Care and 
Use Guidelines of the University of California, San Diego. All mice were 
bred and housed in specific pathogen-free conditions. Wild-type C57BL/6J  
and Ezh2fl/fl mice were obtained from the Jackson Laboratory. Ezh2fl/fl mice 
were crossed with P14 Cd4Cre mice. Donor mice were male or female, 6–8 
weeks old. Recipient mice were male, 6–8 weeks old. For infection experi-
ments, no randomization or blinding was used and no animals were excluded 
from analysis.

Antibodies and flow cytometry. Antibodies to the following were purchased 
from Biolegend and were used at 1:100 dilution: CD8α (53-6.7), CD45.1 (A20), 
CD62L (MEL-14), KLRG1 (2F1), CD44 (1M7), IL-2Rα (PC61), Vα2 (B20.1), 
Vβ8.1/8.2 (KL16-133.18), IL-7Rα (A7R34), T-bet (4B10), IRF4 (IRF4.3E4), 
IFN-γ (XMG1.2), TNF (MP6-XT22). Antibody to Granzyme B (GB11) was 
purchased from Life Technologies and was used at 1:100 dilution. Antibody 
to Ezh2 (11/Ezh2) was purchased from BD Pharmingen and was used at 1:20 
dilution. Annexin V Apoptosis Detection Kit and Mito Flow were purchased 
from Biolegend and Cell Technology. Biotinylated H-2Db gp33 monomer  
(NIH Tetramer Core Facility) was conjugated to streptavidin-PE (Prozyme) to 
generate H-2Db gp33 tetramer for flow cytometry analysis. For intracellular 
detection of IFN-γ and TNF, CD8+ T cells were stimulated ex vivo with LCMV 
gp33-41 peptide (KAVYNFATM) (GenScript) in the presence of brefeldin A 
(Sigma) for 6 h at 37 °C; cells were stained with surface antibodies and then 
fixed in 4% paraformaldehyde (Electron Microscopy Services) and permeabi-
lized before staining with intracellular antibodies. All samples were analyzed 
on an Accuri C6, FACSAria II, or FACSCanto (BD Biosciences).

Adoptive cell transfer and viral infection. 5 × 103 P14 CD45.1+ CD8+ T cells 
were adoptively transferred into congenic wild-type CD45.2+ recipient mice, 
followed by intraperitoneal infection 1 d later with 2 × 105 plaque-forming 
units per mouse of LCMV-Armstrong. Splenocytes were isolated from recipi-
ent mice at 7 d after infection and splenocytes and lymph nodes were harvested 
at 42 d after infection. For the isolation of CD8+ T cells at 4 d after infection,  
5 × 104 P14 CD8+ T cells per mouse were adoptively transferred into 24 recipi-
ent mice. For the isolation of CD8+ T cells that had undergone their first cell 
division, 2 × 106 P14 CD8+ T cells were first labeled with carboxyfluorescein 
diacetate succinimidyl ester (CFSE) before adoptive transfer into recipient 
mice (n = 24) and were harvested 2 d following LCMV infection.

Cell culture and differentiation. Splenocytes obtained from P14 mice were 
activated with gp33-41 peptide (500 ng/ml). After 1 d of activation, P14 CD8+ 
T cells were isolated using the CD8+ T Isolation Kit (Miltenyi). CD8+ T cells 
were then cultured with IL-2 (10 U/ml) or IL-15 (15 ng/ml) (PeproTech) for 
an additional 3 d.

Single-cell transcriptome amplification and RNA-sequencing. The  
C1 Single-Cell Auto Prep System (Fluidigm) was used to perform whole-
transcriptome amplification of up to 96 single cells simultaneously. After cell 
isolation, 2.5 × 105 to 2 × 106 P14 CD8+ T cells sorted by flow cytometry 
were loaded onto the C1 Single-Cell Auto Prep mRNA Array IFC for single-
cell capture on chip. Live/dead stain (Invitrogen) was included to exclude 
dead cells. Viable single cells captured on chip were manually imaged. Cell 
lysis and RT-PCR were performed on chip. SMARTer chemistry (Clontech) 
whole-transcriptome amplification was performed according to the manu-
facturer’s instructions. Illumina Nextera XT single-cell complementary DNA 
(cDNA) libraries were generated according to the manufacturer’s instruc-
tions (Illumina). Quality control measures of the single-cell cDNA librar-
ies were performed on the 2100 Bioanalyzer (Agilent Technologies), Qubit 
3.0 Fluorometer (Thermo Fisher Scientific), and MiSeq Sequencing System 
(Illumina). Single-cell cDNA libraries were sequenced (paired-end 100 or  
single-end 100) on the HiSeq2500 Sequencing System at the UCSD Institute 
for Genomics Medicine (IGM) Center.

ChIP-Seq analysis of Ezh2 and H3K27me3. For ChIP-seq analysis of Ezh2 
and H3K27me3, wild-type CD8+ T cells (from n = 4 mice) were activated 
in vitro with 5 µg/ml plate-bound anti-CD3 (145-2C11) and anti-CD28  

(37.51, Bio X Cell) for 4 d and were sorted by flow cytometry to exclude dead 
cells. 4 × 106 CD8+ T cells were crosslinked in 1% formaldehyde and ChIP was 
performed using the EZ-Magna ChIP kit (Millipore) according to the manu-
facturer’s instructions. In brief, nuclear extracts were prepared and chromatin 
sheared to an average size of 300 bp using a Covaris E220 hydro-shearing  
instrument. For each immunoprecipitation (IP), chromatin from 1 × 106 
cells and 3 µg of antibody were used. Antibodies used were as follows: rabbit 
anti-Ezh2 (H-80, Santa Cruz Biotechnology), rabbit anti-H3K27me3 (07-449, 
Millipore), mouse anti-RNA polymerase II (05-623, Millipore), mouse normal 
IgG (12-371, Millipore) and rabbit normal IgG (026102, Life Technologies). 
Sequence-indexed libraries were prepared from immunoprecipitated DNA and 
input controls (1%) using the NEB Next ChIP Library Preparation Reagent Set 
(NEB), according to the manufacturer’s instructions. Library amplification by 
PCR used 10 cycles for pol II IPs, 12 cycles for input controls and H3K27me3 
IPs, 14 cycles for Ezh2 IPs, and 17 cycles for IgG controls. For the H3K27me3 
coverage comparison of wild-type versus Ezh2-deficient cells, chromatin from 
500,000 cells was used and was amplified for 14 cycles (H3K27me3 IPs) or  
17 cycles (IgG controls). Amplification yielded 200–600 fmoles per sample.  
200 fmol of each library was pooled, selected by size to 250–650 bp on a 
PippinPrep instrument (Sage Science), and sequenced to a depth of 30 million 
reads (50 nt SE) on an Illumina HighSeq4000 instrument.

Bulk-cell RNA-seq. For isolation of CD8+ T cells at 4 d after infection,  
5 × 104 P14 wild-type CD8+ T cells (n = 4) or Ezh2-deficient CD8+ T cells (n = 8)  
were adoptively transferred into recipient mice and sorted by flow cytometry. 
mRNA-stranded cDNA libraries were generated and sequenced on an Illumina 
HighSeq4000 instrument. The bulk samples were processed with Kallisto47, 
using GENCODE GRCm38.p4 transcriptome as the reference, with the following  
parameter: -1 200 –s 20 – single. The read count of each transcript derived from 
Kallisto was summed according to gene names and normalized to a 1,000,000 
read-count of all genes in total for each sample. Differentially expressed genes 
were calculated by the assumption that the read count of each gene follows 
a Poisson distribution. The P value threshold was Bonferroni-corrected and 
ranged from 5−5 to 5−6 for selection of differentially expressed genes for  
gene-ontology analyses, depending on the gene number in each set.

Single-cell RNA-seq data pre-processing. Single-cell mRNA sequencing 
data from 256 CD8+ T cells were processed with a bioinformatics pipeline 
focusing on quality control (QC) and robust expression quantification. For 
each cell, raw RNA-seq reads were: checked for quality metrics with fastqc 
(v0.10.1)48; poly-A and adaptor-trimmed with cutadapt (v1.8.1)49; quantified 
by Kallisto (v0.42.1)50 to a reference transcriptome (Gencode vM3)48 with-
out bias correction; and aligned by STAR (v2.4.1b)51 to the reference mouse 
genome (mm10)52 with default parameters for quality control and downstream 
analysis. Next, the transcript per million (TPM) outputs of Kallisto for all cells 
were combined into a cell-by-gene expression matrix (C = 288 cells = rows,  
G = 22425 genes = columns) by summing the expression values for all quan-
tified transcripts of a given gene. Finally, the TPM value for each cell c and 
gene g was natural log-transformed to yield a normalized expression value: 
EXPRc,g = ln(1 + TPMc,g).

Dimensionality reduction and cell-heterogeneity visualization. To 
reduce the dimensionality of the cell-by-gene expression matrix EXPR and 
visualize the diversity of gene expression among CD8+ T cells of different 
subtypes in a 2-dimensional scatter plot, we applied the t-distributed sto-
chastic neighborhood embedding (tSNE) algorithm53 via its Barnes-Hut 
approximation (bhSNE)54. tSNE is an unsupervised technique based on a 
non-convex objective which solves the so-called crowding problem, and has 
been successfully used to visualize millions of single-cell cytometry meas-
urements where the original dimension is D = ~40 (approximately)55–58. In 
contrast, our total RNA-sequencing data for each cell gave signal for over 
22,000 genes (6,000 of which had a mean expression over all cells greater 
than 1 TPM). Therefore, we first applied standard principal-component 
analysis (PCA) to reduce the dimensionality down to D = 10, and only then 
applied bhSNE to visualize in D = 2 (with perplexity = 30 and theta = 0.75 
parameters). This composition of transformations is standard practice and 
results in a dimensionality reduction that is invariant to reflection58. After 
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dimensionality reduction, each point on the resulting two-dimensional 
scatter plot was colored by the stage of its corresponding T cell population. 
Since we observed two distinct clusters of division 1 T cells (red dots) in our 
tSNE plot (Fig. 2a), we re-colored those cells distinctly for the inset scat-
terplot according to their proximity to the centroids of the clusters of ter-
minally differentiated effector T cells (TTE cells) and memory T cells (TMEM 
cells). Specifically, the proposed Div1MEM cells (inset) were re-colored blue 
because they were closer (in tSNE space) to the overall centroid of all TCM 
cells (purple) and all TEM cells (green) than to that of all day 7 cells (yellow). 
The remaining Div1TE cells (Fig. 2a, inset) remained red because they were 
closer (in tSNE space) to the centroid of all day 7 cells (yellow) than to that 
of the memory T cells (purple and green).

Gene-ontology (GO) analysis. Generated gene lists were uploaded to 
DAVID for analysis. Default background and default threshold were used 
and GOTERM_BP_FAT, GOTERM_MF_FAT, SP_PIR_KEYWORDS,  
UP_SEQ_FEATURE were chosen for target categories.

Supervised analysis of gene expression data. In contrast to the unsupervised 
dimensionality reduction (PCA and tSNE) and hierarchical clustering methods 
which are blind to the cell type labels, we also applied two supervised methods 
which utilize the extra information to give more interpretable results.

For differential gene expression analysis, we performed this analysis between 
all pairs of T cell sub-populations from two non-overlapping sets of rows in the 
log-transformed expression matrix EXPR. Since single-cell gene expression 
does not conform to the usual negative binomial distribution59,60 and can even 
be bimodal due to dropout61, we used two non-parametric statistical tests 
for heterogeneity of expression: the Mann-Whitney-Wilcoxon (MWW; also 
known as MWU) rank-sum test62, which relies on a large sample to approxi-
mate normality; and the Kolmogorov-Smirnov two-sample (KS2) test63, which 
finds the largest difference between the empirical cumulative distributions, 
even between two small samples such as our first division subtypes Div1TE  
(n = 36) and Div1MEM (n = 24).

For the cell type classifier, we trained two binary T cell classifiers to identify 
gene-expression signatures that not only distinguish the T cell subpopula-
tions examined (such as the differential gene expression described above) but 
also can be used to predict the ‘memory-ness‘ or ‘effector-ness’ of previously 
unseen cells. Each classifier constructed an independent ensemble of extremely 
randomized trees64. Using the terminally differentiated effector and memory 
(TCM and TEM) populations, we built a training set for a fate classifier for CD8+  
T cells. Using the newly observed segregation of daughter T cells into Div1TE 
and Div1MEM subpopulations after the first division, we built a second training 
set for another early state classifier. Both classifiers were provided their respec-
tive training sets and evaluated using tenfold cross-validation. A receiver oper-
ating characteristic (ROC) curve was computed by combining the predictions 
on each 10% held-out test set while training on the remaining 90% (ref. 65).  
After both the fate classifier and early-state classifier were trained on their 
respective subpopulations, they were both provided previously unseen inter-
mediate day 4 CD8+ T cells. Their predicted ‘memory-ness’ scores were scatter-
plotted and were shown to correlate (Fig. 3f). For each T cell, its ‘effector-ness’ 
scores is 1 minus the ‘memory-ness’ score and is redundant for this analysis. 
The signature genes for each classifier were selected from all G = 22,425 genes 
by their GINI score65. The surprisingly small overlap in gene-expression sig-
natures for the two classifiers was computed to contrast with their seeming 
agreement in their ‘memory-ness’ score predictions.

Temporal expression trajectories through inferred lineage paths. To under-
stand the temporal dynamics of expression for key genes along the effector and 
memory lineages, we constructed hypothetical differentiation time courses 
for each lineage. In brief, we sampled with replacement 50 cells from each 
population and constructed all trajectories through the cross-product of popu-
lations ordered in a particular lineage. These orders were determined a priori 
on the basis of published work with similar time courses of RT-qPCR data7. 
Specifically, the ‘effector’ lineage starts from the naive population, and progresses 
through the Div1TE subpopulation, then onto day 4, and finally to day 7.  
In contrast, the ‘effector memory’ and ‘central memory’ lineages start from 

naive, through the Div1MEM subpopulation, ending with TEM cells and TCM 
cells, respectively. These bootstrapped trajectories were visually summarized  
by a Seaborn software package time-series plot66, which links the average 
expression for each population sample with a solid line segment and presents 
the 95% confidence interval as a shaded area around it.

H3K27me3-coverage data analysis. Data from H3K27me3 ChIP performed 
on CD8+ T cells sorted at 8 d (effector cells) and 60 d (memory cells) after 
infection were mapped to mm10 reference genome with STAR (v2.4.1b) with 
the following options: outSAMunmapped None; outFilterMultimapNmax 10; 
outFilterMultimapScoreRange 1; limitOutSJoneRead 1; outReadsUnmapped 
Fastx; and all other options as default. ChIP peaks were called by ‘Homer 
findPeaks’-style histone command with Poisson P value cutoff as 0.1% and 
enrichment over input threshold as 4.0 (‘fold’ values). To analyze coverage 
changes around the transcriptional start site (TSS) for the 6,000 expressed 
genes (Fig. 6a), the overlap of peaks and the 20 bins of 100 bp around TSS 
regions were calculated by BEDtools Intersect67. The coverage change was then 
calculated by deducting naive cell coverage around TSS from memory and 
effector cells, respectively. Reads intensity around TSS (Fig. 6b) was calculated 
by the sum of the total reads that were located in the TSS region, normalized 
for both the input reads that were located in TSS regions and the total number 
of reads obtained for each sample. In a similar way, the read intensity of each 
TSS region was derived, and any region with 3× read coverage over input was 
considered significantly covered. In Figure 6c, absolute TPM changes greater 
than 0.5 and absolute TSS ChIP coverage changes greater than 600 bp were 
considered significant. Data are presented as the ratio of H3K27me3-marked 
genes over total genes with decreased expression.

Ezh2 ChIP data analysis. All ChIP data were mapped to mm10 reference 
genome with STAR (v2.4.1b)51 with the following options: outSAMunmapped 
None; outFilterMultimapNmax 10; outFilterMultimapScoreRange 1; limi-
tOutSJoneRead 1; outReadsUnmapped Fastx; and all other options as default. 
ChIP and input data were then converted into tag directory with the HOMER 
command68 ‘makeTagDirectory’ with the following options: keepOne; tbp 1; 
normGC; iterNorm 0.01. H3K27me3 ChIP regions were called by HOMER 
‘findPeaks’ command, using input as background with following options: size 
200; minDist 1000; L 0; and all other options as default. Ezh2 and PolII ChIP 
peaks were identified by using the HOMER software package ‘findPeaks’ com-
mand using input as background with following options: size 100; and all other 
options as default. In order to get the coverage of TSS of the 6000 expressed 
genes (Fig. 6a,d), the overlap of peaks and the 20 bins of 100 bp around TSS 
regions were calculated by BEDtools67. The changes in coverage (Fig. 6a) were 
then calculated by deducting naive cell coverage around TSS from memory 
cells or effector cells. In order to quantify the impact of H3K27me3 and Ezh2 
on gene expression in memory and effector differentiation (Fig. 6c,e), artificial 
bulk gene expression TPM was calculated from single-cell data. In the two sets 
of comparisons (effector vs. naive, memory vs. naive), genes were marked as 
increased or decreased if bulk gene expression changed more than twofold. 
Fisher’s exact test was then performed to determine whether genes targeted by 
Ezh2 or H3K27me3 negatively correlated with TPM changes. To be included as 
targets of Ezh2 or H3K27me3 in Figures 6 and 7, genes were required to have 
≥100-bp TSS region covered by Ezh2 peaks or ≥600-bp TSS region covered 
by H3K27me3. In Figure 6e, data are presented as a percentage of unbound 
or Ezh2-bound genes among total genes with either loss or gain of expression 
in day 4 cells relative to that in Div1TE cells. In Figure 7, normalized TPM 
was calculated to ensure that all genes had mean expression TPM = 1 across 
all single-cell samples.

Statistical analysis. Pearson correlation and Spearman correlation were used 
to assess the significance of memory score prediction by supervised classifiers 
(Fig. 3f). Pearson correlation was used to determine the genes with the most 
significantly differential expression (Fig. 4b). Student’s unpaired t-test was 
used for comparisons involving two groups (Fig. 5d-k). Fisher’s exact test 
was used for comparisons of genes targeted by Ezh2 or H3K27me3, identi-
fied by ChIP (Fig. 6c,e). Differences with an associated P value of <0.05 were 
considered significant.
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