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SUMMARY

Alternative splicing (AS) generates isoform diversity
for cellular identity and homeostasis in multicel-
lular life. Although AS variation has been observed
among single cells, little is knownabout the biological
or evolutionary significance of such variation. We
developed Expedition, a computational framework
consisting of outrigger, a de novo splice graph trans-
versal algorithm to detect AS; anchor, a Bayesian
approach to assign modalities; and bonvoyage, a
visualization tool using non-negative matrix factor-
ization to display modality changes. Applying Expe-
dition to single pluripotent stem cells undergoing
neuronal differentiation, we discover that up to 20%
of AS exons exhibit bimodality. Bimodal exons are
flanked by more conserved intronic sequences
harboring distinct cis-regulatory motifs, constitute
much of cell-type-specific splicing, are highly dy-
namic during cellular transitions, preserve reading
frame, and reveal intricacy of cell states invisible to
conventional gene expression analysis. Systematic
AS characterization in single cells redefines our un-
derstanding of AS complexity in cell biology.

INTRODUCTION

Over 90% of multi-exon human genes undergo alternative

splicing (AS) (Johnson et al., 2003; Pan et al., 2008; Takeda

et al., 2010; Wang et al., 2008). Transcriptome profiling by RNA

sequencing (RNA-seq) is a powerful means to detect and quan-

tify AS in tissue or cell populations (Barbosa-Morais et al., 2012;

Merkin et al., 2012; Wang et al., 2008). Advances in single-cell

RNA-seq (scRNA-seq) now enable the detection of AS at the
single-cell level. Previous studies that investigated AS in single

cells were limited to a few exons (Shalek et al., 2013; Waks

et al., 2011) or focused on discovering novel splice junc-

tions (Marinov et al., 2014). However, the complexity of AS in

single cells remains unappreciated. There is an urgent need to

develop robust computational tools to detect, measure, and

interpret variation in percent-spliced-in (Psi/J) values as a mea-

sure of the inclusion rates of alternative events from scRNA-seq

datasets.

Many computational tools for AS analysis, such as DEXSeq

(Anders et al., 2012) and rMATs (Shen et al., 2014) were devel-

oped for bulk RNA-seq datasets. These algorithms focused

on determining the change in J of events when comparing

two groups (or samples). Algorithms such as MISO (Katz et al.,

2010) utilize probabilistic priors, which can result in incorrect

assignment of J values (see Figure 1 in Data S1). This is

otherwise innocuous when performing pairwise comparisons,

however, for hundreds of single cells, calculating all pairwise

comparisons is impractical. Other available methods that recon-

struct isoforms or estimate read dispersion (Cufflinks, TIGAR2,

WemIQ) (Nariai et al., 2013; Trapnell et al., 2012; Zhang et al.,

2015) are inappropriate due to the current lowmolecular capture

rate and uneven transcript coverage in scRNA-seq datasets.

Thus, the lack of computational tools to describe the distribution

of AS limits single-cell AS analysis to only a few cells or a

few events and prevents us from applying systems biology

approaches to understand AS complexity and dynamics on a

global scale.

DESIGN

Three key design concepts are important in single-cell AS ana-

lyses: (1) implementation of strict rules to identify AS events

and ensure compatibility of the annotation and observed data,

(2) description of variation and distribution of AS events, and

(3) visualization of AS distribution and its dynamics from one

cell-type or state to another. To address these concerns, we
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developed Expedition, a suite of algorithms integrated in a

complete software package. Expedition can identify and quan-

tify AS events in scRNA-seq data (outrigger), categorize splicing

modalities (anchor), and visualize modality dynamics (bonvoy-

age). To illustrate its utility, we sequenced and analyzed single

cells from induced pluripotent stem cells (iPSCs), in vitro dif-

ferentiated neural progenitor cells (NPCs), and motor neurons

(MNs) (Figure 1A). AS events were quantitated by outrigger and

classified into five distinct modalities by anchor. Approximately

75% of AS events exhibit unimodality, where exons are primarily

included or excluded with low variance in each cell population.

Up to �20% of AS events are highly varying, composed mostly

of bimodal AS events. Interestingly, these bimodal AS events

account for essentially all AS events that change modalities dur-

ing neuronal differentiation, reflecting cell-type-specific splicing.

We further validated these events by single molecule RNA-fluo-

rescent in situ hybridization (FISH) and single-cell qPCR. More-

over, we demonstrate that individual bimodal and multimodal

events reveal the subpopulations of cells that were homoge-

neous by conventional global gene expression analysis. Finally,

our study revealed that high variance AS events exhibit evolu-

tionary and sequence characteristics distinct from unimodal

events, emphasizing the importance of single-cell analysis of

RNA processing.

RESULTS

Identification of Alternative Splicing Events in Single
Cells with Outrigger
Human iPSCs were differentiated toward NPCs and MNs, as

supported by immunofluorescence staining and qRT-PCR of

knownmarkers (Figures 1A and S1A). Using the FluidigmC1 sys-

tem, scRNA-seq libraries were prepared (Ramsköld et al., 2012)

and sequenced to an average depth of 15–25 million, 100 bp

paired-end (PE) reads per cell (Figure S1B). Bulk sequencing li-

braries were generated from �1,000 cells. Reads were mapped

to the hg19 genome using RNA-STAR (Dobin et al., 2013), and

gene expression was estimated as transcripts per million

(TPM) using sailfish (Patro et al., 2014). Genes detected in at

least ten cells were retained and �4,000–11,000 genes were

identified per cell in each population (Figures S1C and S1D).

Downstream analyses were performed on scRNA-seq datasets

from 62 iPSCs, 69 NPCs, and 60 MNs that satisfied stringent

quality control metrics, after excluding outliers detected by

k-means clustering (Figure S1E). Lineage-specific transcription

factors (POU5F1, PAX6, and ISL1) and RNA binding proteins

(LIN28A, MSI1, and RBFOX1) that distinguished each cell-type

were observed (Figure S1F). Principal and independent compo-

nent analysis (PCA and ICA) confirmed distinct iPSC, NPC, and

MN populations that were each relatively homogeneous (Figures

S1G and S1H).

To analyze alternative splicing (AS) events in scRNA-seq, we

developed outrigger, an algorithm that uses junction-spanning

reads to detect and quantify AS. Outrigger builds a de novo

index based on the aligned reads to identify known and novel

AS events (Figure S1I; Data S1, Figures 2–4). Strict rules were

applied to report only events with sufficient read coverage, valid

splice sites, and definitions compatible with skipped exon (SE)
2 Molecular Cell 67, 1–14, July 6, 2017
and mutually exclusive exon (MXE) annotations (Figure S1J).

Requiring at least ten reads per junction, outrigger detected

�2,000–10,000 SE and MXE events in each cell. Single iPSCs

contained a higher number of AS events (�5,000–10,000)

compared to NPCs or MNs (�2,000–6,000) (Figures S1K and

S1L), likely due to higher RNAcontent in iPSCs. The bulk samples

consistently comprised of �10,000 events, more than most

single cells. When an AS event is detected in only a few cells, it

may be due to biological variation, aberrant splicing, or technical

noise. Thus, we retained 13,910 AS events that were detected in

at least ten non-outlier cells in each population within genes that

satisfy an expression threshold of TPM >1 (Figures S1M–S1O).

An example of an AS event detected by outrigger is a MXE event

of exons 9 (e9) and 10 (e10) in the PKM gene, encoding pyruvate

kinase, which is known to be differentially spliced between

committed andproliferative tissues (Christofk et al., 2008; Taken-

aka et al., 1989) (Figure 1B). PKM is highly expressed across the

three cell types, yet individual iPSCs almost exclusively utilizes

e10 whereas e9 is the major AS exon in MNs, although 20%

(14 out of 60) of MNs were observed to possess both isoforms

in each cell (Figures 1C and 1D). To verify the differential inclusion

of e10 and e9 in iPSCs andMNs, we designed RNA-FISH probes

that target constitutive exons of PKM and two probe sets target-

ing e9 or e10, exclusively. Our RNA-FISH results agreed with

outrigger predictions (Figure 1E). Furthermore, ICA based on

theJ value for each AS event within non-differentially expressed

genes generalized our findings with PKM splicing. Single-cell

alternative splicing profiles identified by outrigger distinguish

the three cell types (Figures 1F and 1G) demonstrating that AS

discerns cell identities independent of gene expression.

Assignment of Single-Cell Alternative Splicing Events to
Modalities Using Anchor
To categorize the distribution of single-cell J values, we devel-

oped a Bayesian framework, anchor, to designate each AS

exon’s distribution into one of five modalities: (1) excluded,

where most cells contain the excluded isoform (J�0); (2)

bimodal, where two subpopulations with either the excluded

(J�0) or included isoform (J�1) can be observed; (3) included,

wheremost cells contain the inclusion isoform (J�1); (4) middle,

wheremost individual cells have both the inclusion and exclusion

isoforms (J �0.5); and (5) multimodal, where the distribution of

inclusion and exclusion isoforms does not fit any of the previous

categories (Figures 2A–2B). Within each cell type, theJ distribu-

tion for each AS event was modeled using a Beta distribution

(Barash et al., 2010). A two-step process was used to assign

modality (Figure 2C). A Bayes factor (K) of fit was first calculated

for the one-parameter models, namely included and excluded. If

K did not meet the cutoff (log2(K) > 5), these events were then as-

sessed for their fit to the two-parameter models, namely middle

and bimodal. Remaining events were assigned to themultimodal

modality. Using anchor, detection of unimodality was robust up

to the addition of �50% uniform random noise (Figures S2A–

S2G), and bimodality was detected up to a 9:1 ratio of inclusion

to exclusion and was robust with up to 70% uniform random

noise (Figures S2H–S2R).

In all three cell types, exons within the excluded and included

modalities account for 25%–30% and 45%–50% of all AS exons



IC1

IC
2

IC1

IC
2

ICA by expression ICA by AS events

cons.exons e10 merge

cons.exons e9 merge

iPSCs

MNs

iPSCs

MNs

%
 o

f d
is

tri
bu

tio
n

%
 o

f d
is

tri
bu

tio
n

normalized inclusion frac.

normalized inclusion frac.

iPSC
MN

F

0

5

10

15

20

0.00 0.25 0.50 0.75 1.00

0

1

2

3

4

5

0.00 0.25 0.50 0.75 1.00

A

E

(non-DE genes) (non-DE genes)

iPSCs (63 cells)
+2 bulk samples

PAX6NPCs (73 cells)
+3 bulk samples

MNs (70 cells)
+3 bulk samples

ISLET1/
TUJ-1

OCT4/
TRA-1-60

e8 e10 e11

e9

PKM2

PKM1

Single
iPSCs

Single 
NPCs

Single
MNs

pooled
iPSCs

pooled
NPCs

pooled
MNs

Outlier
iPSC

Outlier
NPCs

Outlier
MNs

11e01e9e8e

chr15: 7249922-72492817

B D

iPSC
NPC
MN

Bulk
Outlier

PKM exon 9

iPSC NPC MN
0.0

0.5

1.0

G

C

12

8

4

2

0

PKM

iPSC NPC MN

lo
g 2(T

P
M

+1
)

Figure 1. Cell-Type-Specific Alternative Splicing Is an Independent Feature of Cell Identity

(A) Human iPSCs were directly differentiated into neuron progenitor cells (NPC) or motor neurons (MN) in vitro. Cell identity was verified by immunofluorescence

staining. A total of 63 iPSCs, 73 NPCs, and 70 MNs passed QC and were retained for splicing analysis. Bulk samples are independent samples of �1,000 cells.

(B) Pyruvate kinase M (PKM) is consistently expressed in iPSCs, NPCs, and MNs.

(C) Differential inclusion of a mutually exclusive exon (MXE) alternative splicing (AS) event in PKM is observed in the three cell types from scRNA-seq. Top:

schematic of the MXE composed by exon 10 (e10) and exon 9 (e9). Bottom: distribution ofJ for exon 9 in single cells.J score is estimated by outrigger (see the

STAR Methods). Each green dot in the violin plots represents one cell. Black dots represent measurements in bulk samples.

(D) Coverage track of MXE exons in pyruvate kinase M (PKM) gene. Each row represents a single cell/sample.

(E) Preferential inclusion of e10 and e9 in iPSCs andMNs, respectively, were demonstrated in single cells by smRNA-FISH. Probe sets against constitutive exons

(green inmerge images) and either exon 10 or exon 9 (red inmerge images) were designed inPKM gene. Representative smRNA-FISH images are shown for exon

10 (upper) and exon 9 (lower) (left). Distribution of normalized exon inclusion is depicted in iPSCs (light blue with dashed outline) and MNs (dark blue with solid

outline; right). A total of 74 iPSCs and 101 MNs were counted for e10 inclusion; 125 iPSCs and 67 MNs were counted for e9 inclusion.

(F and G) AS profile is an independent feature of cell types. A total of 12,685 non-differentially expressed (non-DE) genes were identified by non-parametric

Kruskal-Wallis test with Bonferroni-corrected q values >1. (F) ICA on gene expression values of non-DE genes fails to distinguish the three cell types. (G) ICA onJ

scores of the AS events residing in non-DE genes groups iPSCs, NPCs, and MNs independent of gene expression.

See also Figure S1.
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Figure 2. Assignment of Single-Cell Alternative Splicing Distributions to Modalities Using Anchor Algorithm

(A) Schematic of SE andMXE alternative splicing events. ‘‘Exclusion isoform’’ refers to exclusion of alternative exon (exon 2 in SE and exclusion of exon 2 [black]

but inclusion of exon 3 [gray] in MXE), and ‘‘Inclusion isoform’’ refers to inclusion of alternative exon (exon 2 in SE andMXE) of alternative exon. Circles illustrate a

single cell containing RNA molecules of a given AS event. Light gray represents exclusion isoform and dark gray represents inclusion isoform.

(B) A schematic of the proposed five modalities tested by anchor. Distribution of J for each AS event can be modeled as a Beta probability distribution

parameterized by a and b. Modality of excluded (J density concentrated around 0), bimodal (J density concentrated toward 0 and 1), included (J density

around 1), middle (J density around 0.5), or multimodal (J density spread out uniformly across 0 to 1). The first four modalities are tested by anchor, and the final

multimodal modality is the null model.

(C) Two-step modality assignment process is utilized by anchor. For the J distribution of a given AS event, the Bayes factor (K) of fit is first calculated for

one-parameter models (only one of a or b is parameterized), including included and excluded modalities. If K > Kcutoff, modality is assigned to the modality with

highestK. When Kcutoff is not satisfied, an event will be tested in the second step, in which the Bayes factor (K) of fit is calculated for two-parameter models (where

both a and b are parameterized), including bimodal and middle modalities. If an event cannot fit at either step, it will be assigned to multimodal modality. Kcutoff =

25 = 32 for both steps. Five events from each modality assigned by anchor were randomly selected as examples.

(D) Composition of AS modalities is similar in iPSCs, NPCs, and MNs. Right: zoomed-in panel shows middle and multimodal modality are <1% in the three

populations.

(E) Composition of modalities of permuted splicing data.J scores from all identified AS events in all cells were randomly permuted 1,000 times, then anchor was

applied to estimate modalities. Almost 100% of permuted events are assigned as bimodal. Error bars represents 95% confidence interval from 1,000 boot-

strapped intervals. Right: zoomed-in panel shows low percentage of unimodal events in permuted data.

See also Figure S2.
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Figure 3. Bimodal AS Events Exhibit Distinct Sequence and Evolutionary Features
All results are shown for iPSCs that have the highest number of AS events (12,690). All q values of significance were derived from multiple hypothesis corrected

(Bonferroni) non-parametric Mann-Whitney U test, unless otherwise indicated.

(A) Left: cumulative distributions of the mean Placental Mammal PhastCons score in each modality together with constitutive exons as comparison. AS exons

from included modality (red) are as conserved as constitutive exons (black), while excluded exons (blue) are least conserved, followed by bimodal (purple) and

multimodal (gray) exons. Right: heatmap of pairwise significance scores between each modality or constitutive exons.

(B) Mean Placental Mammal PhastCons scores of flanking introns of AS exons in excluded (blue), bimodal (purple), multimodal (gray), included (red) modalities,

and constitutive (black) exons in all cell types. Bottom: nucleotide-level significance of PhastCons scores is presented 0 < �log10(q) % 50 for clarity.

(C) Phylostratum scores are summarized for genes harboring AS events in each modality together with genes containing constitutive exons. Right: pairwise

significance scores.

(legend continued on next page)
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analyzed, respectively, indicating that up to 70%–80% of AS

events in a given cell-type exhibit unimodality (Figures 2D and

S2S), with events largely shared across cell types (Figure S2T).

In comparison, AS events that exhibit bimodality account for

up to 20% of detected AS events, whereas the middle andmulti-

modal modalities account for less than 1% of AS events. The

high-variance bimodal and multimodal events differ the most

from AS estimates from bulk RNA-seq with a DJ > 0.1 for

40%–80% of the events (Figure S2U). Simulations indicate that

the observed percentages of unimodal and bimodal AS events

are statistically unexpected (random permutations expect 99%

bimodality and �0% unimodality; Figure 2E). As we increased

the gene expression thresholds, the total number of reliably de-

tected AS events decrease for all modalities. Yet, bimodal events

continue to be observed even in the genes with the highest

expression (log2(TPM+1) > 9, Figures S2V–S2Y), suggesting

that sampling biases cannot account for the observation of

bimodality. Therefore, anchor estimated that most AS events

are included or excluded in single cells, with up to a fifth of events

exhibiting bimodality or multimodality, which are undetected in

bulk splicing analyses.

Splicing Modalities Exhibit Distinct Sequence and
Evolutionary Characteristics
To investigate whether events in different modalities had distinct

properties, we first measured the degree of evolutionary con-

servation of exon sequences across placental mammals.

Expectedly, exons in the included modality show the highest

degree of sequence conservation equivalent to that of constitu-

tive exons, whereas exons in the excluded modality are least

conserved (Figure 3A). Bimodal exons exhibit an intermediate

level of evolutionary conservation, which is statistically signifi-

cantly different from excluded and included modalities (q <

10�50, q < 10�100, respectively). However, intronic sequences

flanking excluded and bimodal AS are both significantly more

conserved than introns flanking included or constitutive exons,

a trend that increased along neural differentiation (Figures 3B,

S3A, and S3B). While both excluded and bimodal introns

are highly conserved, bimodal introns are more conserved in

the 5–20 bp window adjacent to the exon-intron junction,

whereas conservation levels for excluded modality decrease in

the same region. We also examined the evolutionary history of

genes containing bimodal and multimodal exons. Interestingly,

98 genes harboring multimodal and 1,832 genes containing

bimodal AS events are found in more recently evolved genes,

as evidenced by their phylostrata classification (Domazet-Loso

and Tautz, 2008), in comparison to genes containing excluded

or included AS events, or all genes containing any AS exon (Fig-

ure 3C). Additionally, orthologous exons of 28 bimodal and 3

multimodal AS are more frequently alternatively spliced across
(D) Mammal-conserved AS exons and their percentage in each modality. Hyperge

statistical significance. Fraction indicates number of conserved AS exons divide

(E) Intron lengths in excluded, bimodal, multimodal, and included modalities, wit

(F) Conserved intronic sequences in each modality are enriched with distinct nuc

circle as a motif and the vectors as component loadings of intronic groups. Left

nucleotide enrichment in each modality.

See also Figure S3.
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mammals (Figure 3D). The lengths of exon and flanking introns

of bimodal AS events are significantly longer than those of

the included modality and constitutive exons (Figures 3E and

S3C). Repetitive elements such as Alu are known to be stochas-

tically exonized (Stower, 2013), and we found Alu elements are

more enriched within excluded exons, are fewer within bimodal

exons, and are almost absent from AS events in the included

modality (Figure S3D). Other features analyzed, including splice

site strengths and GC content, showed that bimodal and multi-

modal exons as intermediate between excluded and included

modalities (Figures S3E–S3I). We conclude that bimodal and

multimodal events are enriched for longer flanking introns

with higher conservation, present in recently evolved genes,

and have orthologs in mammals that are also subject to AS.

Next, we asked whether there are cis-regulatory elements

within flanking intron sequences. We performed PCA on RBP

motif (Ray et al., 2013) enrichment scores for conserved flanking

introns of AS exons in each modality (Figures S3J–S3O). We

found that introns flanking exons that exhibit bimodal and

included modalities are enriched for U-rich and G-rich motifs,

respectively, regardless of the cell types. Moreover, upstream

intronic sequences of exons within the included modality are en-

riched for GC, and the downstream counterparts are enriched for

GA motifs (Figure 3F). This finding suggests that the sequence

properties of the introns, together with the trans-factors associ-

ated with these motifs distinguish each AS modality, indepen-

dent of cell type. Together, our results reveal that exons with

highly variant AS events have sequence and evolutionary attri-

butes distinct from other modalities.

Cell-Type-Specific AS Events Are Largely Comprised of
High Variance Events
We next asked whether there are AS events that change mo-

dalities during the differentiation of iPSCs to MNs or NPCs (Fig-

ures 4A and S4A). To our surprise, we found that only �20% of

AS events shared between pluripotent stem cells and the

neuronal derivatives exhibit a change in modality (q < 10�100,

hypergeometric test, corrected for multiple hypothesis testing).

As these events have a unique modality in each cell type, they

are cell-type-specific. Less than a fifth (�18%) of the AS events

detected in two cell types (iPSCs and NPCs or iPSCs and MNs)

exhibited a change in modality (Figure 4B). At least 99% of

these switching events are comprised of bimodal AS events

(Figure 4C). As cells transition from iPSCs to NPCs or to

MNs, 66% and 72% of the unimodal events became bimodal

or multimodal, and conversely, 34% and 27% of bimodal

events switched to a unimodal modality. These ‘‘switching’’

AS events are enriched for Gene Ontology categories, such

as ‘‘protein localization or transportation’’ and ‘‘RNA process-

ing’’ (Figure S4B).
ometric test (multiple hypothesis corrected with Bonferroni) indicated q < 10�5

d by the total AS exons in that modality.

h constitutive exons as comparison. Bottom: pairwise significance scores.

leotides. Motifs enriched for each modality are presented by PCA, with each

: motifs are annotated with motif sequences. Right: a simplified illustration of
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Figure 4. Dynamic AS Events Are Highly Variant Bimodal and Multimodal Events

(A) AS events change modalities during the transition from iPSCs to MNs, presented as events in iPSCs (y axis) against their corresponding modalities in MNs

(x axis). Heatmap represents the%of overlapping events in the iPSCs andMNs, annotatedwith the numbers of events. Notably, 88%of excluded events in iPSCs

remained in the excluded modality, and 86% of included events in iPSCs remained as included in MNs. In contrast, 52% of bimodal events in iPSCs switch to

either included or excluded modalities in MNs. Multiple hypothesis corrected (Bonferroni) hypergeometric tests were used to determine significance.

(B) During the differentiation from iPSCs toMNs or from iPSCs to NPCs, we found that 1,586 (17.6%) or 1,029 (18.1%) AS events switchedmodality, respectively.

(C)Within the switching events, 99%of AS events either switched from a bimodal/multimodal state or switched toward a bimodal/multimodal state. Less than 1%

of switching events were among other types of modality changes.

(D–F) AS events in bimodal modality exhibit flexibility in protein coding. (D) Schematic of predicted protein coding changes associated with AS exon inclusion.

Pink highlights creation of translated proteins or protein domain clades when AS exon is included. Purple represents maintenance of protein clades with or

without change of domain clades. Blue represents loss of domain clades or disruption of translation when AS exons are included. The square and circle illustrate

different Pfam domain clades. The square with dashed outlines represents translated protein, which may contain a Pfam domain. (E) The coding outcomes are

summarized in the six categories based on all AS events. The percentage of each translation configuration is used as the background distribution for significance

calculations in (F). (F) AS events in bimodal modality are enriched for maintaining reading frame and presence of domain. The dominant isoforms in included and

excluded modalities favor protein or domain creation and switching to the other isoform results in disruption of reading frame. Enrichment is calculated against

population average as shown in (E) in each category using multiple hypothesis corrected hypergeometric tests (*q < 10�10, **q < 10�10).

See also Figure S4.
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Because bimodal and multimodal events are more likely to

switch modality during differentiation, we asked whether they

are more likely to preserve protein-coding capacity. We required

that either the excluded or included isoform (Figure 4D) is part

of an annotated coding transcript and utilized hmmscan (Eddy,

1998; Finn et al., 2015) to search Pfam (Bateman et al., 2004;

Finn et al., 2016) for protein domain clades (Figure 4E). Both

included and excluded modality exons were enriched for the
presence of known protein domain clades in their dominant

isoform (q < 10�10, hypergeometric test corrected for multiple

hypothesis testing). Switching to the other isoform either disrup-

ted the reading frame or the functional protein domain, under-

scoring the importance of maintaining their dominant isoform.

Surprisingly, the bimodal and multimodal AS events appear to

balance domain creation with maintenance and disruption be-

tween isoforms. In particular, �65% of multimodal and �50%
Molecular Cell 67, 1–14, July 6, 2017 7
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of bimodal events result in domain maintenance where a func-

tional domain has been exchanged or preserved, in contrast to

15%–30% of excluded and included modalities (Figure 4F).

Highly Variant AS Events Can Reveal Subpopulations
Invisible to Conventional Gene Expression Analysis
As highly variant bimodal and multimodal AS events appear to

be most sensitive to differentiation, we surmised that they pro-

vide an opportunity to identify subpopulations that would other-

wise be difficult to discern when analyzing gene expression in

scRNA-seq data. To illustrate, SNAP25 (synaptosomal-associ-

ated protein 25) is a presynaptic plasma membrane protein of

the trans-SNARE complex that mediates synaptic vesicle mem-

brane docking and fusion. Mutually exclusive exons 5a and 5b

are characterized as high variance multimodal events in MNs

(Figures 5A–5C and S5A). Exon 5b is included more in the adult

brain (Johansson et al., 2008), which may facilitate faster exocy-

tosis (Nagy et al., 2008). We identified genes that correlated with

the J values of exon 5a (Spearman correlation jRj > 0.5; Fig-

ure S5B), which separated the MNs into two clusters (Figures

5D–5G). Excitingly, MNs that included exon 5a (J > 0.5) express

genes essential in cytoskeletal reorganization required for

axon guidance and dendritic spine formation and maturation

(KATNAL1, ZMYND10, WASF2, and STX16). They also express

genes associated with repression of cell proliferation (Figure 5D,

red labels). Thus, MNs utilizing exon 5a are less ‘‘mature,’’ may

have recently exited cell proliferation, and are forming synapses.

In contrast, MNs that included exon 5b (J < 0.5) are enriched

with genes associated with synapse organization and synaptic

vesicle trafficking (SYNGR3, DCTN1, COPA, and PCLO), genes

associated with intracellular vesicle trafficking, as well as plasma

membrane receptors and cell-cell contact genes (Figure 5D, blue

labels). Thus, MNs utilizing exon 5b reflect mature neurons with

active protein transport and vesicle trafficking. To summarize,

genes that correlate with theseJ values distinguish the two sub-

groups by PCA, whereas a complete list of expressed genes

from MNs fail to do so (Figures 5F and 5G).

As another example, we observed an SE event from DYNC1I2

(dynein cytoplasmic 1 intermediate chain 2), which is bimodal in

both iPSCs and NPCs (Figures 5H–5M and S5C). DYNC1I2 en-

codes a non-catalytic component of the cytoplasmic dynein 1

complex, which acts as a retrograde microtubule motor to trans-

port organelles and vesicles (Crackower et al., 1999). NPCs were

clustered into two groups by genes that correlate withJ scores

of this SE exon (Figures 5J and 5K). The subgroup withJ�1 are

enriched for genes associated with various neuronal genes,

such as ONECUT2, a generic transcription factor of motor

neurons and genes related to axon guidance and cytoskeleton

reorganization (Figure 5J). This subgroup is also enriched for

multiple neuron-specific RNA binding proteins (RBPs), including

ELAVL2-4 and SRRM4. The subgroup of NPCs with J �0 is

strongly enriched with genes associated with cell division, DNA

replication, and translation. Again, in contrast to all genes de-

tected in NPCs, only genes that correlate with J scores reveal

the substructures of NPC population by PCA (Figures 5L and

5M). Thus, the bimodality of this SE event is a sufficient measure-

ment to delineate NPCs into amore proliferative subgroup (J�1)

consistent with their progenitor fate and a subgroup (J�0) that
8 Molecular Cell 67, 1–14, July 6, 2017
appears farther on the neuronal trajectory. Many additional ex-

amples were found including AS exons in PKM, SUGT1, BRD8,

MDM4, MEAF6, and RPN2 (Figures S5D–S5O), demonstrating

that high variance AS events extracted from single cells offer

an additional layer of information to demarcate cell states that

are otherwise hidden in overall gene expression analysis.

Transformation of Splicing Distributions to ‘‘Waypoints’’
Reveals Dynamic of AS Events
To visualize changes in modalities, we developed bonvoyage,

where the distribution ofJ values of each AS event across single

cells from a cell type is first discretized and then reduced via non-

negative matrix factorization (NMF) (Figure 6A, left and middle),

an algorithm that decomposes data into its constituent parts

(Lee and Seung, 1999). The J values are factorized into two

components, excluded (x axis) and included (y axis), which

depict the ‘‘waypoint’’ space (Figure 6A, right). Usage of the

waypoint space is illustrated using simulated modality data (Fig-

ures S6A–S6D). Each AS event is depicted as a point in waypoint

space, which represents the distribution of J scores in single

cells (Figure 6B). All the AS events measured in a cell type

were projected into waypoint space and colored by their corre-

sponding modalities identified previously by anchor (Figures

6C and 6D). In such a representation, each modality occupies

a discrete region in waypoint space. Also, AS events that change

their J distributions during differentiation undergo ‘‘voyages.’’

To illustrate, exon 9 of PKM is excluded in iPSCs, becomes

more included in NPC and is a bimodal exon in MNs. Such a

change of modality creates a voyage in waypoint space (Fig-

ure 6E). In contrast, projection of this event measured in bulk

MNs failed to capture the bimodality. Additionally, MAP4K4

encodes a member of the serine/threonine protein kinase

family and inclusion of exon 16 extends MAP4K4’s protein ki-

nase-like domain. This event became progressively more

included along MN differentiation, readily observed in a voyage

plot, which we independently confirmed by RNA-FISH (Figures

S6E and S6F).

We next sought to establish a global view of AS changes

between cell types. Focusing on exons with large voyages (Fig-

ure S6G), we visualized the voyaging exons using vectors

between iPSCs and MNs. Consistent with our modality-based

analysis (Figure 4A), a majority of cell-type-specific exons

changed from or to the bimodal modality (Figures 6F, 6G, and

S6H). To evaluate the consequences of voyages on the protein

properties of resulting isoforms, we transformed each protein

property into a waypoint-weighted score, enabling an evaluation

of protein property based on both isoforms and their distribution

in single cells. Among properties investigated, we found that

MNs favor splicing that generates more disordered and basic

proteins, such as the AS events in RPS24 (ribosomal subunit pro-

tein S24) and ZNF207/BuGZ (Figures 7A and 7B).

To validate the J distributions of bimodal and high-magni-

tude voyaging AS events during MN differentiation, we designed

splicing-sensitive primers to assess exon usage by qPCR at sin-

gle-cell resolution in iPSCs, NPCs, and MNs. We observed that

�60% AS events recapitulated an exon inclusion distribution

like our findings using scRNA-seq (Figures 7C–7F and S7A–

S7N). For example, the SE event in RPS24 that introduces a
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Figure 5. Bimodal and Multimodal AS Events Reveal Subpopulations Invisible by Conventional Gene Expression Analysis
(A–G) SNAP25 AS reveals a more mature subpopulation in motor neuron population. (A) SNAP25 is primarily expressed in MNs. (B) Inclusion of exon 5a in

SNAP25 in the three populations. (C) Number of cells that contain primarily exon 5a or 5b (or both) inmotor neurons. (D) Preferential usage of exon 5a or exon 5b of

SNAP25 in MNs reveals intricate cell states. Genes correlated with theJ score of this MXE clustered MNs into two main subgroups,J�1 (red in the legend bar)

andJ�0 (blue in the legend bar). Rows represent the genes and columns represent single cells. Cells withJ around 0.5 are illustrated by yellow in the legend bar.

Black and light gray indicate qualified and outlier MNs based on k-means clustering, respectively. Gradient of purple indicates gene expression in log2(TPM+1),

with darker being highly expressed. A few representative genes from the two subgroups are highlighted in red or blue. (E) Examples of representative genes that

correlate withJ of exon 5a of SNAP25. KATNAL1 and ANAPC16 are more enriched in the cells withJ�1. DCTN1 and PCLO are more enriched in the cells with

J �0. X axis represents the J score, and y axis represents gene expression in log2(TPM+1). Each MN is depicted as a green circle. Solid green line represents

linear regression between J and the expression of indicated genes. Shaded green represents 95% confidence interval of the regression. (F and G) Genes that

correlate with exon 5a of SNAP25 distinguish MNs into two subgroups. Each MN is depicted as a dot in PCA. Red, cells withJ �1; blue,J �0; yellow,J �0.5;

and X, cells with aJ assigned as NA. (F) PCA of all expressed genes in MNs failed to separate the two subgroups. (G) Using only the genes correlated withJ of

exon 5a in SNAP25, two subgroups are readily separated. Percent of variance explained are indicated at each PC.

(H–M) A bimodal SE event in DYNC1I2 separates NPCs into a more proliferative subgroup and a subgroup on the trajectory of neuronal differentiation. (H) Gene

expression of DYNC1I2. (I) J distribution of a SE event in DYNC1I2. This event is bimodal in both iPSCs, NPCs, and becomes included in MNs. (J) Genes that

correlate withJ of the SE event inDYNC1I2 cluster the NPCs into two subgroups. Green, NPC; blue, cells withJ around 0; red, cells withJ around 1; light blue to

yellow, cells withJ around 0.5; black and gray, cells designated as qualified versus outlier-cells based on k-means clustering. Representative genes enriched in

the two subgroups are highlighted in blue or red. (K) Example genes enriched in the two subgroups of NPCs. J scores of the SE in DYNC1I2 is on x axis, and

expression of indicated genes is on y axis. (L and M) Only genes that correlate withJ separate two subgroups in NPCs, with each NPC depicted as a dot in the

PCA. Blue, cells withJ �0; red, cells withJ�1; yellow,J �0.5; X, cells with aJ assigned as NA. (L) PCA of all genes expressed in NPCs failed to separate the

two subgroups. (M) Genes that correlated with J separate the two subgroups by PCA.

See also Figure S5.
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Figure 6. Bonvoyage Visualizes Dynamic AS Changes

(A) A schematic to illustrate the transformation of splicing profiles into the two-dimensional waypoint space by bonvoyage. Splicing distribution of each event (A–D

represent four different AS events) was discretized into bins (left), factorized byNMF and projected onto a 2-dimensional space (middle), such that each data point

summarizes a distribution of AS. The origin represents a distribution that all cells contain 50% inclusion and 50%exclusion isoforms.When the distributions of the

same event (either event B or C) are visualized in two different cell types or states, the change in the event is illustrated by its voyage in the waypoint space (right).

(B) AS events in iPSCs projected in the waypoint space. The shade of hexagon indicates the number of events.

(C) AS events in iPSCs (same as in B), colored by the modality estimated by anchor. Each dot represents the distribution of one AS event. Note each modality

occupies a distinct region of the waypoint space. Black-outlined circle highlights PKM MXE event.

(D) AS events in MNs are colored by their modalities and presented in waypoint space. Black-outlined square highlights PKM MXE event.

(E) Dynamics of theMXE event inPKM is illustrated in the waypoint space. Shown is the inclusion of exon 9 ofPKM, which is included in both iPSCs andNPCs and

becomes bimodal in MNs. Greys represent J measurements in bulk samples.

(F and G) Global splicing dynamics between iPSCs and MNs are shown and categorized by voyage direction instead of modalities. Only the events with voyage

distanceR0.2 are shown for clarity (Figure S6G). (F) Number of AS events in iPSCs that transitioned to (as indicated by the directionality of the arrows) excluded,

bimodal, included, middle, or multimodal modality in MNs. (G) Same data as in (F), visualized by vectors representing the iPSC (tail) and MN (tip) position of the

alternative exon. Colors of arrows reflect the event modalities in iPSCs.

See also Figure S6.
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stop codon and removes three amino acids from its C-terminal

was partially included in individual iPSCs (middle modality) and

became completely included in almost all NPCs and MNs

(Figure 7C), which was confirmed by single-cell qRT-PCR (sc-

qPCR) (Figure 7D). Also, exon 9 in ZNF207 encoding serine-

rich sequences that may affect post-translational modifications
10 Molecular Cell 67, 1–14, July 6, 2017
starts as multimodal in iPSCs and becomes more included

in MNs (Figure 7E). The modalities and voyages of these

and many other exons were validated by sc-qPCR (Figures 7F

and S7A–S7N). In conclusion, bonvoyage is an effective

method to visualize and identify AS events that change across

populations.
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Figure 7. Single-Cell qRT-PCR Validation and Summary of Biological Findings

(A and B) Waypoint-weighted protein properties that change between iPSCs and MNs. Significant changes (in blue) are identified by a factor of three on

Mahalanobis distance relative to all iPSC-MN comparisons. X and y axis labels refer to weighted protein property in iPSC and in MN, respectively. (A) Protein

disorder where a score >0.5 by IUPred (black dashed line) indicates disorder. (B) Isoelectric point (pI) where the black dashed line indicates pI = 7.

(C–F) Distribution of AS inclusion is verified by single-cell qRT-PCR (sc-qPCR). See also Figure S7. (C) Percent spliced-in (J) distributions for RPS24 exon 5

measured by scRNA-seq. (D) Percent exon inclusion distributions for RPS24 exon 5 measured by sc-qPCR. (E) Percent spliced-in (J) distributions for ZNF207

exon 9 measured by scRNA-seq. (F) Percent exon inclusion distributions for ZNF207 exon 9 measured by sc-qPCR.

(G) In summary, at single-cell resolution, three main categories of modalities can be identified: included, excluded, and bimodal. Each modality has unique

sequence, coding, and evolutionary features. During cell differentiation, a majority of unimodal events are static, whereas the highly variance events are dynamic,

playing a key role in shaping transcriptome.
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DISCUSSION

We have developed the Expedition software suite, integrating

outrigger, anchor, and bonvoyage, to address key issues of AS

analysis from scRNA-seq data. Many studies have performed

RNA sequencing from bulk samples to measure AS, where the

‘‘relative’’ inclusion (DJ) of alternative exons in a comparison

(e.g., treatment versus control or between tissues) is the primary

metric used. However, DJ comparisons across all single cells

are impractical. Thus, robust estimation of J is required to

assess the distribution of J among a population of single cells.

It is also important thatJ values reflect the actual biological phe-
nomenon, such that aJ value of 0.5 indicates that 50% of tran-

scripts include the alternative exon while the other 50% exclude

it. Thus, usingJ of 0.5 as a prior in probabilistic models and as-

sessing the confidence of estimates by resampling data (Katz

et al., 2010)may not be appropriate in single-cell splicing analysis

as it does not eliminate caseswhere theobserveddata and anno-

tation are incompatible (examples shown in Data S1, Figure 1). In

contrast, outrigger identifies splicing events by constructing de

novo splicing annotation based on only junction-spanning reads

and reconstructs the exon trio (quartet) for SE (MXE) events using

graph traversal. Outrigger then applies user-defined rules to

ensure compatibility and sufficient read-coverage of AS events.
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Anchor enables robust classification of AS exons into five mo-

dalities (included, middle, excluded, bimodal, and multimodal).

Anchor characterizes distribution and variation at the popu-

lation level using a Bayesian approach, instead of estimating

the noise or cell-to-cell variation of AS events (Marinov et al.,

2014). The representation of modalities in all three cell-types is

remarkably consistent: �30% excluded, �50% included, and

�20% bimodal modalities, with small contributions from middle

and multimodal modalities, indicating that AS is largely unimodal

in single cells. The ability to categorize AS distribution and vari-

ation into modalities allowed us to identify distinct sequence

and evolutionary features for the threemajor modalities (summa-

rized in Figure 7G). While high variance bimodal and multimodal

AS events exhibit some features intermediate between included

and excluded modalities, other features suggest that these AS

events reflect an evolutionarily important class of exons distinct

from included and excluded. High variance events contain

more highly conserved and longer flanking introns containing

cis-motifs enriched for U or UA nucleotides, in contrast to the

G-rich sequences in included modality. G-rich sequences have

been shown to create G-quadruplexes that increase the effi-

ciency of splicing (Marcel et al., 2011; Ribeiro et al., 2015; Zizza

et al., 2016), and thus the lack of G-rich sequences proximal to

bimodal events may promote their regulatory flexibility. Interest-

ingly, high variance AS events are also enriched for genes pre-

sent in more recently evolved phylostrata. This enrichment is

concomitant with a peak of gene emergence associated with

the evolution of multicellularity, shortly before the Cambrian ex-

plosion (Domazet-Loso and Tautz, 2008). Orthologous exons of

the human bimodal AS events detected in our cells are alsomore

frequently regulated as AS across other mammalian lineages

(Merkin et al., 2012).

A distinct property of bimodal and multimodal AS exons is

their preference to maintain protein translatability, possibly

with a different function between the two isoforms. Bimodal

and multimodal exons in the same cell provide cells the flexibility

to increase protein diversity without severely compromising pro-

tein-coding capacity. This is in contrast to the exons within the

included or excluded modalities, which tend to create or disrupt

reading frames. While it is currently unknown whether these

multimodal AS events are a consequence of selective allelic

expression or splicing, our evidence suggests that the creation

and preservation of bimodal AS exons is likely beneficial for

the development of a flexible repertoire of protein variants to effi-

ciently cope with evolutionary or environmental changes.

Lastly, we illustrate that high variance AS events reveal cellular

states invisible to conventional gene expression analysis alone,

emphasizing the utility of analyzing AS at the single-cell level.

The findings that high variance AS events are primary determi-

nants of cell-type-specific splicing is reminiscent of the findings

that the cell-type- or state-specific master regulators are more

likely to be variable in either gene expression (Shalek et al.,

2013, 2014) or epigenetic control (Buenrostro et al., 2015).

In summary, our study provides a computational framework to

deconvolute the complexity of AS at a single-cell level. Prospec-

tively, Expedition can be applied to other increasingly popular

data types represented by distributions of continuous variables

(including, but not limited to, RNA editing, nucleotide modifica-
12 Molecular Cell 67, 1–14, July 6, 2017
tions such as pseudo-uridine and N6-methyl adenosine, alterna-

tive polyadenylation sites, and polyA tail lengths), providing

advanced analysis to categorize and describe these molecular

features at single-cell resolution.
Limitations
Currently, the accuracy of scRNA-seq is confounded by the low

molecular capture rate and uneven coverage of transcripts.

Thus, we have captured AS profiles for moderate to highly ex-

pressed genes but not for genes with the lowest abundance.

Additionally, we are unlikely to capture AS events that occur

closer to the 50 ends of transcripts. Although we have found

that the vast majority of genes use one dominant isoform

per cell, it is possible that minor isoforms are not sampled

adequately. With more efficient molecular capture rates, the

middle and multimodal modalities may comprise larger propor-

tions than we currently estimate. In the future, a comprehensive

comparison of outrigger with all available AS algorithms will be

useful for scRNA-seq applications. Lastly, while we expect the

main conclusions to be robust, applying Expedition to greater

numbers of cells in diverse cell populations will be informative.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse anti-Tubulin beta III Millipore MAB1637

Rabbit anti-Oct4 Abcam Ab19857

Mouse anti-TRA1-60 Millipore MAB4360

Chicken anti-PAX6 DSHB P3U1

Rabbit anti-Islet1/2 Santa Cruz Biotechnology Sc-30200

Chemicals, Peptides, and Recombinant Proteins

N2 supplement Life Technology Cat# 17502-048

B27 supplement Life Technology Cat# 17502-044

Ascorbic acid Sigma-Aldrich Cat# 4544

GDNF R&D system Cat# 212-GD

BDNF R&D system Cat# 248-BD

CNTF R&D system Cat# 257-NT/CF

dorsomorphine Tocris Cat# 3093

SB431542 Tocris Cat# 1614

Retinoic Acid Sigma-Aldrich Cat# R2625

SAG EMD Millipore Cat# 566660

DAPT Tocris Cat# 2634

Critical Commercial Assays

SMARTer Ultra Low RNA cDNA Synthesis Kit Clontech Cat# 634833

Nextera XT DNA Sample Preparation Kit (96 Sample Illumina Cat# FC-131-1096

Single Cell-to-CT qRT-PCR Kit ThermoFisher Cat# 4458237

Stellaris RNA FISH Hybridization Buffer LGC Biosearch Technologies Cat# SMF-HB1-10

Stellaris RNA FISH Wash Buffer A LGC Biosearch Technologies Cat# SMF-WA1-60

Stellaris RNA FISH Wash Buffer B LGC Biosearch Technologies Cat# SMF-WB1-20

SsoFast EvaGreen Supermix with Low ROX BIO-RAD Cat# 1725211

Deposited Data

RNA-seq data This paper GEO: GSE85908

smRNA-FISH data This paper; Mendeley Data 10.17632/vhtn65y828.1

Experimental Models: Cell Lines

iPSC Gore et al., 2011 N/A

Oligonucleotides

Sc-RT-qPCR primers Table S1 Table S1

Custom Stellaris FISH Probes Table S2 Table S2

Software and Algorithms

STAR aligner Dobin et al., 2013 https://github.com/alexdobin/STAR

Outrigger This paper http://yeolab.github.io/outrigger/

Anchor This paper https://github.com/YeoLab/anchor

Bonvoyage This paper https://github.com/YeoLab/bonvoyage

Python 2.7 Python Software Foundation https://www.python.org/

pandas N/A http://pandas.pydata.org/

Scikit-learn N/A http://scikit-learn.org/stable/

flotilla This paper https://github.com/YeoLab/flotilla

kvector This paper https://github.com/olgabot/kvector

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Poshsplice This paper https://github.com/olgabot/poshsplice

Seaborn N/A http://seaborn.pydata.org/

Matplotlib 10.5281/zenodo.15423 https://matplotlib.org/

Jupyter/IPython N/A http://jupyter.org/

Scipy N/A https://www.scipy.org/

Numpy N/A http://www.numpy.org/

adjustText N/A https://github.com/Phlya/adjustText

Other

C1 autoprep system Fluidigm https://www.fluidigm.com/products/

c1-system

Biomark HD Fluidigm https://www.fluidigm.com/products/

biomark-hd-system

Detailed protocols for preparing single cell RNA-seq

libraries, single cell qPCR and RNA-FISH

Fluidigm and Biosearch Techonologies Supplemental Discussion
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CONTACT FOR REAGENT AND RESOURCE SHARING

Requests should be directed to and will be fulfilled by Lead Contact Gene W. Yeo (geneyeo@ucsd.edu)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines and Culture
iPSCs (male) (Gore et al., 2011) were cultured on matrigel (Corning) coated plates using mTeSR (Stem Cell Technologies) media with

mTeSR supplement (StemCell Technologies) at 37�C incubator with 5%CO2. All human samples were obtained and used according

to a protocol approved by the Institutional Review Board of University of California, San Diego.

Differentiation
Neuron progenitor cells were differentiated from iPSCs. Briefly, iPSCs were cultured in matrigel coated plates and dislodged by dis-

pase. To form embryonic bodies, the dislodged colonies were cultured in DMEM/F12 (Invitrogen) with GlutaMax and N2 supplement

in non-adhere petri dish. Media were replaced every other day for 7 days. EBs were then placed onto matrigel coated plate to allow

rosette formation. Clean rosette were picked manually and maintained in EB media for 7 days and subsequently dissociated with

accutase and cultured in NPC media (DMEM/F12, GlutaMax, N2 and B27 with 2 mg/ml FGF) to allow neuron progenitor cell differ-

entiation. NPCs were maintained in NPC media.

Motor neurons were directly differentiated from iPSCs as previous described (Chambers et al., 2009). Briefly, iPSCs were cultured

on matrigel coated plates until fully confluent in mTeSR then switch to knockout serum replacement media (KSR) containing Dorso-

morphin (1mM) and SB431542 (10 mM). Upon day 4 of differentiation, increasing amounts of N2 media (25%, 50%) was added to the

KSR. From day 7 of differentiation, 1.5 mM retinoic acid and 200nM Smoothened Agonist (SAG, EMDMillipore) were added to induce

patterning. Cells were dissociated on day 18 of differentiation and replated in poly-D-lysine and laminin coated plates. Maturation

was performed using BDGF (2ng/ml), GDNF (2ng/ml), CNTF (2ng/ml), ascorbid acid, sonic hedgehog, and retinoic acid in N2 and

B27 media up until 35 days of differentiation.

METHOD DETAILS

Single cell capture and library construction
iPSCs, NPCs and MNs were dissociated using accutase(Stem cell Biotech) and filtered through 40 mm cell strainers to obtain single

cell suspension. Single cells were captured on C1 auto prep platform (Fluidigm) according to manufacturer’s instructions. C1 auto

prep chips were visually inspected with a light microscopy at 20X to ensure singularity of captured cells. All non-single cells were

discarded from analysis. SMARTer Ultra Low RNA cDNA Synthesis Kit (Clontech) was used to reverse transcribe polyA-tailed

RNA. cDNA was amplified using Advantage 2 Polymerase Mix by PCR at 95�C for 1 min, followed by 21 cycles of 15 s at 95�C,
30 s at 65�C and 6 min at 68�C, followed by another 10 min at 72�C as a final extension. cDNAs were inspected using Agilent

Bioanalyzer High Sensitivity DNA chips and quantitated by PicoGreen dsDNA Assay kit (ThermoFisher). cDNAs were diluted to

1ng to generate libraries using the Nextera XT DNA kit (Illumina). Libraries were multiplexed and sequenced on Illumina HiSeq2000

to generate 100bp PE reads.
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Single cell qPCR and primer designs
Single iPSCs, NPCs and MNs were captured on C1 auto prep platform (Fluidigm, CA). All non-single cells were discarded from

analysis. cDNA from single cells were prepared using the Single-Cell-to-Ct kit (ThermoFisher, USA) and pre-amplified with a pool

of primers designed for the splicing events and the expression of corresponding genes (Table S1). Inclusion and exclusion primers

were specifically designed to quantitate inclusion and exclusion of AS exons and expression primers were designed from constitutive

exons. All primers were tested for amplification efficiency. High-throughput quantitative PCR was performed on 96.96 Dynamic

Arrays on BioMark system (Fluidigm) according to manufacturer’s instructions. 3 housekeeping genes (RPL22, RPL27, PGK) and

lineage genes (POU5F1, LIN28A, DPPA2, PAX6, NES, ISL1, MNX1, STMN2) were included.

RNA fluorescence in situ hybridization (FISH)
To verify alternative splicing of MXE event composed of exon 9 and 10 in PKM, we designed 3 probe sets (Custom Stellaris FISH

Probes, Biosearch Technologies, Inc., CA, Table S2) using the Stellaris RNA FISH Probe Designer available online. One set against

constitutive exons of PKM labeled with Quasar 570, two probe sets specifically against exon9 or exon 10, respectively, labeled with

Quasar 670. For Exon16 SE event in MAP4K4, one probe set against constitutive exons was designed and labeled with Quasar570

and another probe set against exon16 was designed and labeled with Quasar 670.

iPSCs and MNs grown on matrigel coated coverslip were fixed with 3.7% formaldehyde (PFA) for 10 min at room temperature.

The probes for constitutive (1.25 mM) and alternative exons (1.25 mM) were mixed and hybridized to the cells in 10% deionized form-

amide for overnight at 37�C, according tomanufacturer’s instructions. ForMNs, a probe set against ISL1 is designed and labeledwith

fluorescein to allow the counting of only motor neurons.

RNA-FISH image acquisition and data processing
Images were acquired on Applied Precision OMX Super Resolution System at the Microscopy Core in the School of Medicine (UC

San Diego). Specifically, transmission and acquisition time were set at 100% and 2 min for both FISH probes (constitutive and alter-

native exons). DAPI was acquired at 10% transmission and 20 s to localize the cells. Sections were taken at 0.125 mm for the depth of

cell diameter, usually around 10-12 mm. The resulting stacks of images were deconvoluted usingmanufacturer software. Foci of RNA

molecules were quantified using Volocity 6.3 (PerkinElmer). The raw count files were then processed in R to compute ratio of exon

inclusion. To limit non-specific foci, only the foci identified by both inclusion probe and constitutive probe were counted for included

exons. Normalized inclusion ratio is calculated by percentage of included probes co-localized with constitutive probes/constitutive

probes, and resulting percentage is normalized by 95 percentage of the maximal percentage.

QUANTIFICATION AND STATISTICAL ANALYSIS

Primary RNA-Sequencing data processing and outlier cell detection
RNA-sequencing reads were trimmed using cutadapt (v1.8.1) of adaptor sequences TCGTATGCCGTCTTCTGCTTG, ATCTCGTAT

GCCGTCTTCTGCTTG, CGACAGGTTCAGAGTTCTACAGTCCGACGATC, GATCGGAAGAGCACACGTCTGAACTCCAGTCAC, ½A�50,
½T �50, andmapped to repetitive elements (RepBase v18.05) using the STAR (v2.4.01) (Dobin et al., 2013). Reads did notmap to repetitive

elements were then mapped to the human genome (hg19), using GENCODE (v19) gene annotations to create the splice junction data-

base. SJ.out.tab files from STAR were used to create alternative splicing annotations and calculate percent spliced-in.

Gene expression was quantified with sailfish using GENCODE v19 protein-coding and long non-coding RNA annotation. Tran-

script-level expression was then aggregated to genes. Genes with TPM >1 in at least 10 cells were identified (18,594 genes). Cells

with <4;000 expressed genes were filtered out. 63 iPSCs, 73 NPCs, and 70 MNs pass gene expression level quality control.

K-means clustering was performed with k= 3 on gene expression matrix, with 1000 random initializations. Cells did not clustered

into their designated populations were identified as outliers and discarded from splicing analysis. For iPSC: 71 were captured, 63

passed expression QC, 1 was assigned as outlier and 62 were retained. For NPC: 98 were captured, 73 passed QC, 4 were assigned

as outliers and 69 were retained; for MN: 93 were captured, 70 passed QC, 10 were assigned as outliers and 60 were retained.

Estimation of alternative splicing
Outrigger (see Data S1) created a custom alternative splicing index on the splice junction (SJ.out.tab) files created by STAR, and

GENCODE v19 was used to define possible exons. A total of 40;534 skipped exon (SE) and 13; 217 mutually exclusive exon

(MXE) were created as possible alternative events. Percent spliced-in (Psi/J) score is used to measure the degree of alternative

exon inclusion and calculated as inclusion reads/(inclusion reads + 2* exclusion reads). Psi/J scores were calculated for events

with aminimum of 10 junction reads. Alternative events were defined by, 0<J< 1,Js0;1 in at least one cell. AS events were further

filtered to be detected in at least 10 cells of a given cell-type, resulting in 13; 910 events. Constitutive exons were defined as not

appear as the alternative exon in any of the splice types (MXE and SE), with at least 10 reads on both upstream and downstream

junctions, in at least 10 cells per cell type.
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ICA, hierarchical clustering and GO analysis
To perform ICA (Independent Component analysis) on non-differentially expressed genes (non-DE genes), non-DE genes (12,685)

were identified across the three populations using a non-parametric Kruskal-Wallis test with Bonferroni-corrected p-value, called

q, with q> 1 as the cutoff. AS events were extracted from non-DE genes and their Psi scores were subjected to ICA. The NAs in

splicing matrix were replaced with an arbitrary number (100) out of the range of Psi values. Choice of the arbitrary number does

not affected the ICA results.

Hierarchical clustering was performed using the fastcluster and the polo package (optimal leaf ordering) in Python with Euclidean

distance metric and Ward’s method.

Gene Ontology (GO) enrichment was performed usingmygene package in Python with only the ‘‘biological process’’ category. The

significance was corrected for multiple hypothesis testing using Bonferroni correction as performed in the Python package goatools

(https://github.com/tanghaibao/goatools).

Assignment of modalities to AS J distributions
Js are continuous value between (0,1), thus distribution ofJ can be modeled as a Beta distribution. The probability density function

for the Beta distribution, Pr(a, b) is defined between (0,1), with parameters a > 0 and b > 0. The Beta distributions can be described by

four parameterizations, which correspond to the four modalities: excluded (1 = < a < b), middle (a = b > 1), included (a > b > = 1) and

bimodal (a = b < 1). Multimodal modality corresponds to a = b = 1, and was used as null model. The excluded and includedmodalities

vary only one parameter at a time, whereas middle and bimodal modalities vary both a and b simultaneously. Models with more pa-

rameters are more likely to fit, thus we fit AS distributions to one-parameter models first, assessing whether K > Kcutoff for either

excluded or included. If so, it is assigned to the modality with highest K. The distributions don’t fit the one-parameter model are

then fitted to the two-parameter bimodal and middle models, to assess whether K > Kcutoff. If the distributions cannot fit to any of

the four modalities, they are assigned to multimodal. Modalities are estimated by anchor software (see Data S1) using the default

parameters. Only the AS events observed in at least 10 cells per cell-type are considered. The performance of anchor was tested

extensively using simulated data in comparison to existing bimodality detecting methods (see Data S1).

Molecular features of alternative exons and isoforms
Placental Mammal PhastCons scores were used to represent evolutionary conservation. For average conservation of exons,

bigWigAverageOverBed (Kent et al., 2010) was used to calculate the mean conservation across each exon. Bases with no annotated

conservation were considered as NAs. For base-wise conservation, a memory-mapped GenomicArray was created by HTSeq

Python package, which was then queried with the intronic intervals.

To identify repetitive elements in AS exons, Repeat Masker track was downloaded from UCSC Genome Browser and intersected

with AS exons by bedtools intersect. Repeats were grouped into families defined by the Dfam database of repetitive DNA elements.

Phylostratum scores were used to describe gene age, as previously reported (Domazet-Loso and Tautz, 2008). Since different AS

exons in a given gene could be assigned with different AS modalities, this gene was considered in multiple modalities.

To calculate k-mer enrichment, placental mammal conserved elements was downloaded from UCSC and filtered for regions up-

stream and downstream of AS exons. Kvector (https://github.com/olgabot/kvector) was used to count k-mers in these conserved

elements. Z-scores of k-mer enrichment were calculated for each intron group defined by cell-type, intron context, and modality

against total k-mer counts in the same intron context and cell type, but for all modalities (Figures S3K and S3L). PCA was performed

with Z-scores using the Python package scikit-learn (Figure S3L). k-mers were labeledwith the color for themost common nucleotide

in the motif (if there was a tie between nucleotides, the k-mer was assigned gray) and for which the squared PCA distance were

greater than two squared standard deviations from the center, i.e., an ellipse around the origin of the plot. Python package adjustText

was used to adjust the text labels for readability.

To calculate motif enrichment, the CISBP-RNA binding database (version 0.6) was used. Each position-weight matrix (PWM) was

transformed into a Boolean vector of k-mers with no mis-matches (Figure S3M). All values%0:1 were set to zero. The resulting motif

k-mersmatrix was used to calculatemotif k-mers enrichment using a t-test, by comparing eachmotif k-mer to all k-mers of that intron

group. PCAwas performed on the resultingmotif t-statistics (Figures 3F and S3O).Motifs were labeled for thosewith greater than two

squared standard deviations from the center.

To compareJ between the bulk sample and single cells, we computed themean of each pairwise difference of the pooled sample

J and every single-cell J.

To evaluate splice site strength, 50 of exon-intron boundary (�20nt into intron and +3nt into exon) and 30 of exon-intron boundary

(�3nt into exon and +6nt into intron), together with the transcript sequences for these regions were obtained by bedtools and

pybedtools. MaxEntScan (Yeo and Burge, 2004) was used to calculate the strength of the splice sites for the AS exons (Figures

S3E and S3F).

To address whether inclusion of AS exons would change coding capacity, we curated translatable transcripts for the ones that

have at least one isoform annotated to contain a CDS based on GENCODE v19. A total of 22,152 SE and MXE events reside in

such transcripts. If the AS exons participated in transcripts with multiple reading frames, all the reading frames were included. To

identify protein domains for the translatable transcripts, hmmscan command from the HMMER software suite (v3.1b1) (Finn et al.,

2011) was used against Pfam-A database, with a domain-independent E-value cutoff of 10�5. Domains were further aggregated
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into clades based on Pfam’s annotations. Finally, we annotated whether inclusion of the AS exons leads to an annotated translation,

with or without a clade or with the same or different clades (Figures 4D–4F).

Identification of genes that correlate with AS events
To identify the genes correlating with bimodal and multimodal AS events, we first identified variant genes for which the variances are

more than two standard deviations away from the mean variance of all genes. Then, genes with Spearman correlation jRj > 0.5 be-

tween genes andJ scores of each tested AS event were retained as correlated genes. The correlated geneswere subsequently used

for hierarchical clustering and PCA (Figures 5 and S5).

Transformation of splicing distribution into 2-dimensional space
To facilitate visualization and quantitation of splicing distribution changes, we have developed bonvoyage to transformJ distribution

into 2-dimensional space (see Data S1). First, J distribution was discretization into 10 bins, each of size 0.1. The binned splicing

matrix is B c[k, j], where the value of feature (AS event) j are contained in bk. After transformation, B c[ j,k] was reduced via non-nega-

tive matrix factorization (NMF), to generate a W[j,2] matrix, where each feature(AS event) j can be summarized by two prominent

values as exclusion and inclusion. The resulting 2-dimensional space is called ‘waypoint space’ and the distance between two points

in waypoint space is named as ‘voyage’. Python package scikit-learn was used for NMF implementation.

Waypoint-weighted protein properties
To obtain protein properties, we used IUPred (Dosztányi et al., 2005) to calculate protein disorder and the ProtParam module in

BioPython to calculate aromaticity, instability index, molecular weight, secondary structure properties (alpha-helix, beta-sheet,

and turns), flexibility, grand average of hydropathy (GRAVY) and isoelectric point.

We summarized isoform-integrated protein properties by using the waypoint space coordinates as weight indexes. pincluded and

pexcluded were used to represent the protein property value (e.g., molecular weight or disordered protein score) of each isoform,

and wincluded and wexcluded were used to represent the splicing event’s waypoint space coordinates for the included ðyÞ and excluded

ðxÞ axes. The weighted protein property, pw, for each cell population was calculated as

pw =pincludedwincluded +pexcludedwexcluded :

For properties that have a relative center, e.g., isolectric point for which 7 is the neutral point, the center value, pcenter, was sub-

tracted for each protein property:

pw =pcenter + ðpincluded � pcenterÞwincluded + ðpexcluded � pcenterÞwexcluded :

To identify protein properties that changed significantly between cell types, Mahalonobis distance ðdmÞ, a non-parametric method

to identify outliers from distributions was used. We used 3dm as the threshold for highly changed protein properties.

qPCR data processing
The log expression of each primer set ‘g’ was computed as logEg,c = 25 – Ct g,c, where c is the cell and Ctg,c is the Ct value for cor-

responding primer set. iPSCs were filtered by (RPL22 > 5, LIN28A > 8 and POU5F1 > 8), NPCs were filtered by (RPL27 > 9, PAX6 > 1,

NES > 1) and MNs were filtered by (RPL27 > 9, ISL1 > 2 and STMN2 > 5). A total of 216 single iPSCs, 77 single NPCs and 146 single

MNs were retained for further analysis. If Ctexp,c is > 25 (Ct value for the expression primer), the corresponding Ctinc,c (Ct value for the

inclusion primer) and Ctexc,c (Ct value for the exclusion primer) were excluded from analysis. Percentage of inclusion is calculated by

2^Ctinc/(2^Ctinc + 2^Ctexc). Distribution of percentage of inclusion is plot by violin plot or decomposed into 2-dimension space

(nmf(dataset, 2, ‘lee’)) and projected into waypoint space in R.

DATA AND SOFTWARE AVAILABILITY

All Python code in the form of Jupyter notebooks is available at https://github.com/YeoLab/singlecell_pnm, and the Expedition suite

is available here: https://github.com/YeoLab/Expedition, with individual outrigger, (https://github.com/YeoLab/outrigger), anchor

(https://github.com/YeoLab/anchor), and bonvoyage (https://github.com/YeoLab/bonvoyage) packages available separately. The

accession number for the single-cell RNA-sequencing data reported in this paper is GEO: GSE85908. The smRNA-FISH data

reported in this paper has been deposited at Mendeley Data: 10.17632/vhtn65y828.1.

ADDITIONAL RESOURCES

Detailed Protocols
The Supplemental Information details three protocols. Protocol 1 describes the procedure of single cell capture and RNA-

sequencing library preparation. Protocol 2 describes the procedure of single cell capture for qPCR. Protocol 3 describes single mole-

cule RNA-FISH.
Molecular Cell 67, 1–14.e1–e5, July 6, 2017 e5

https://github.com/YeoLab/singlecell_pnm
https://github.com/YeoLab/Expedition
https://github.com/YeoLab/outrigger
https://github.com/YeoLab/anchor
https://github.com/YeoLab/bonvoyage

	MOLCEL6271_proof.pdf
	Single-Cell Alternative Splicing Analysis with Expedition Reveals Splicing Dynamics during Neuron Differentiation
	Introduction
	Design
	Results
	Identification of Alternative Splicing Events in Single Cells with Outrigger
	Assignment of Single-Cell Alternative Splicing Events to Modalities Using Anchor
	Splicing Modalities Exhibit Distinct Sequence and Evolutionary Characteristics
	Cell-Type-Specific AS Events Are Largely Comprised of High Variance Events
	Highly Variant AS Events Can Reveal Subpopulations Invisible to Conventional Gene Expression Analysis
	Transformation of Splicing Distributions to “Waypoints” Reveals Dynamic of AS Events

	Discussion
	Limitations

	Supplemental Information
	Author Contributions
	Acknowledgments
	References
	STAR★Methods
	Key Resources Table
	Contact for Reagent and Resource Sharing
	Experimental Model and Subject Details
	Cell lines and Culture
	Differentiation

	Method Details
	Single cell capture and library construction
	Single cell qPCR and primer designs
	RNA fluorescence in situ hybridization (FISH)
	RNA-FISH image acquisition and data processing

	Quantification and Statistical Analysis
	Primary RNA-Sequencing data processing and outlier cell detection
	Estimation of alternative splicing
	ICA, hierarchical clustering and GO analysis
	Assignment of modalities to AS Ψ distributions
	Molecular features of alternative exons and isoforms
	Identification of genes that correlate with AS events
	Transformation of splicing distribution into 2-dimensional space
	Waypoint-weighted protein properties
	qPCR data processing

	Data and Software Availability
	Additional Resources
	Detailed Protocols





