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SUMMARY

Pancreatic b cell mass for appropriate blood glucose
control is established during early postnatal life.
b cell proliferative capacity declines postnatally,
but the extrinsic cues and intracellular signals that
cause this decline remain unknown. To obtain a
high-resolution map of b cell transcriptome dy-
namics after birth, we generated single-cell RNA-
seq data of b cells from multiple postnatal time
points and ordered cells based on transcriptional
similarity using a new analytical tool. This analysis
captured signatures of immature, proliferative b cells
and established high expression of amino acid meta-
bolic, mitochondrial, and Srf/Jun/Fos transcription
factor genes as their hallmark feature. Experimental
validation revealed high metabolic activity in imma-
ture b cells and a role for reactive oxygen species
and Srf/Jun/Fos transcription factors in driving post-
natal b cell proliferation and mass expansion. Our
work provides the first high-resolution molecular
characterization of state changes in postnatal b cells
and paves the way for the identification of novel ther-
apeutic targets to stimulate b cell regeneration.

INTRODUCTION

Pancreatic b cells maintain blood glucose homeostasis by

secreting insulin in response to nutrients such as glucose, amino

acids, and lipids. Defects in b cell function and reduced b cell

mass cause diabetes mellitus. The early postnatal period is

important for establishing appropriate b cell mass as well as

responsiveness to nutrient cues (Jermendy et al., 2011). During
1160 Cell Metabolism 25, 1160–1175, May 2, 2017 ª 2017 Elsevier In
this period, b cell mass expands substantially in both mice and

humans owing to a neonatal burst in b cell proliferation (Finegood

et al., 1995; Gregg et al., 2012). This burst is followed by a sharp

proliferative decline early postnatally and a more gradual decline

during aging. The molecular pathways governing postnatal b cell

growth have been under intense investigation in hopes of

identifying therapeutic approaches for stimulating human b cell

regeneration.

Studies have identified cyclin-dependent kinase 4 (Cdk4) and

D-type cyclins as important regulators of postnatal b cell prolifer-

ation (Georgia and Bhushan, 2004; Kushner et al., 2005; Rane

et al., 1999). Upstream of the basic cell cycle machinery,

neonatal b cell proliferation is driven by Pdgf-receptor-mediated

signaling acting via the Ras/MAPK pathway (Chen et al., 2011)

and calcineurin signaling through the transcription factor (TF)

NFAT (Goodyer et al., 2012). Although several regulators of

b cell proliferation have been identified, the upstream signals

that cause cell cycle arrest of most b cells during early postnatal

life remain unknown.

A major obstacle in defining the pathways and mechanisms

that drive postnatal cell cycle arrest is the heterogeneity

among individual b cells. Proliferative b cells are rare, and b cells

may change their features asynchronously during early post-

natal life. Hence, at a given time point, the b cell population

may contain proliferative, quiescent, functionally mature, and

immature b cells. This concept is supported by studies in adult

mice showing heterogeneity of b cells with regard to their

molecular features, proliferative capacity, and responsiveness

to nutrient cues (Bader et al., 2016; Dorrell et al., 2016; Johnston

et al., 2016).

Population-based gene expression profiling generates

average measurements and masks the variation across

individual cells, thus limiting insight into different cell states.

By providing gene expression profiles of individual cells,

single-cell RNA sequencing (RNA-seq) can overcome this prob-

lem, as subpopulations of cells can be identified based on
c.
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Figure 1. Single-Cell RNA Sequencing of b Cells during Postnatal Development

(A) Experimental overview.

(B) Correlation between average transcript levels of all genes detected in single cells and bulk cells. For single cells, gene expression was averaged across

individual cells collected at different time points. Points are colored by postnatal day (P) collected (P1, red; P7, green; P14, blue; P21, orange; and P28, black). The

same color coding for groups was used across all figures. Pearson correlation coefficients r are given.

(legend continued on next page)
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transcriptional similarity. In several contexts, this approach has

revealed molecular profiles of distinct cell types not recognized

at the population level (Macosko et al., 2015; Treutlein et al.,

2014). Furthermore, in samples throughout a developmental

time course, single-cell expression profiles can be used to order

cells along a ‘‘pseudotemporal’’ developmental continuum;

a method that has helped resolve cellular transitions (Bendall

et al., 2014; Trapnell et al., 2014). However, this approach has

not yet been applied to a maturation time course of a single

cell type, where insight into cell state changes could be gained.

Here, we applied single-cell RNA-seq to reconstruct the post-

natal developmental trajectory of pancreatic b cells. We isolated

b cells at five different time points between birth and post-wean-

ing and generated single-cell transcriptomes. We then devel-

oped a one-dimensional (1D) projection-based algorithm to

construct a ‘‘pseudotemporal’’ trajectory of postnatal b cell

development by ordering all profiled b cells based on transcrip-

tional similarity. This analysis revealed remarkable changes in

b cell metabolism during early postnatal life. We show that post-

natal b cell development is associated with amino acid depriva-

tion and decreasing production of mitochondrial reactive oxygen

species (ROS) and demonstrate a role for amino acids and ROS

in postnatal b cell proliferation and mass expansion.

RESULTS

Transcriptional Heterogeneity of Postnatal b Cells
Pancreatic b cells acquire a fully differentiated phenotype after

completion of a postnatal maturation process (Jermendy et al.,

2011). To probe this process in vivo, we performed single-cell

RNA-seq on sorted b cells frommIns1-H2B-mCherrymice (Ben-

ner et al., 2014) at postnatal day 1 (P1), P7, P14, P21, and P28

(Figure 1A). As a control, population (bulk) cDNA libraries of the

corresponding time points were also generated. To obtain reli-

able single-cell libraries, we applied several quality control

criteria (see STAR Methods; Figures S1A and S1B). RNA-seq li-

braries from single cells and bulk samples were sequenced to an

average depth of 4.3million reads. Saturation analysis confirmed

that this sequencing depth was sufficient to detect most genes

represented in the single-cell libraries (Figure S1C). On average,

6,298 genes per library were detected. Libraries that contained

fewer than one million unique reads and for which more than

15% of fragments mapped to mitochondrial protein-coding

genes were excluded (Table S1). Based on these criteria, we re-

tained data from 14 bulk samples and 387 single cells (84 cells

from P1, 87 cells from P7, 88 cells from P14, 68 cells from

P21, and 60 cells from P28). To minimize technical noise and ar-

tifacts, such as batch effects, we applied ‘‘surrogate variable

analysis’’ for sequencing experiments (SVA-seq) (Leek, 2014).

To assess single-cell data quality, we compared the correla-

tion between average transcript profiles of single cells and

bulk cells of the same age. At all ages, the average profiles of
(C) Expression analysis of select genes showing variability in gene expression am

level of an individual cell. Black bars represent the average of pooled single cells

(D) Pairwise correlation of single-cell gene expression showing biological variation

correlation coefficients between single cells is plotted.

(E) Multidimensional scaling of single-cell transcriptomes. The distance between

See also Figure S1 and Table S1.
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single cells correlated highly with the bulk cell profile (r = 0.83–

0.87; Figure 1B). We then compared expression patterns of

select genes. Average expression levels of Ucn3 and Mafb,

two genes known to be regulated during postnatal b cell devel-

opment (Blum et al., 2012; van der Meulen et al., 2012), showed

temporal regulation similar to bulk experiments (Figure 1C).

Notably, Ucn3 and Mafb exhibited high variability in cell-to-cell

gene expression, whereas the housekeeping gene Calm1 did

not (Figure 1C). This implies that the observed transcriptional

heterogeneity reflects true biology and is not a technical artifact.

At an individual cell level, Ucn3 and Mafb expression were

negatively correlated (Figure S1D), suggesting that declining

expression of Mafb is accompanied by increasing expression

ofUcn3 across individual cells. Genome-wide transcript expres-

sion between single cells at each time point showed only mod-

erate correlation (r = 0.3–0.7; Figure 1D), indicating considerable

gene expression heterogeneity between age-matched cells. To

visualize the degree of similarity among all b cells from different

time points, we employed multidimensional scaling analysis.

The analysis showed progression of most cells along a single

trajectory, implying a continuous b cell maturation process.

While the majority of b cells grouped together by age collected,

there was no clear separation between stages and cells from

one age often crossed into the transcriptional space of other

ages (Figure 1E). This shows that a significant fraction of b

cells from late postnatal time points bears higher similarity

with cells from earlier than from age-matched time points and

vice versa.

Reconstructing a Trajectory for b Cell Maturation
Given the heterogeneity ofb cells at each stage,we reasoned that

ordering b cells by transcriptional similarity rather than time of

collection could provide insight into the transcriptional dynamics

associated with b cell maturation not captured when evaluating

bulk gene expression data across the time course. With the

recent growth in single-cell transcriptome data, numerous

methods have been reported to computationally order individual

cells according to the gradual transition of their transcriptomes

(Campbell et al., 2015; Ji and Ji, 2016; Reid and Wernisch,

2016; Trapnell et al., 2014). The process of ordering cells

in silico is called pseudotime reconstruction because it places in-

dividual cells on a virtual time axis along which the cells are pre-

sumed to travel as they differentiate or mature. We postulated

that such de novo predicted developmental path could expose

previously unrecognized transcriptional dynamics of postnatal

b cell maturation. To construct a pseudotemporal time course

of maturing b cells, we adapted a previously developed 1D prin-

ciple-component analysis (PCA) method (Zagar et al., 2011). The

method establishes a pseudotemporal trajectory by ordering sin-

gle-cell profiles based on transcriptional similarity along a linear

ruler, allowing for exploration of gene patterns over the recon-

structed developmental trajectory of continuously placed cells.
ong single cells of the same age. Each point represents the gene expression

.

among single cells of the same age. The distribution of the pairwise Pearson’s

any two cells reflects the similarity of their expression profiles.
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Weobservedminimal branching in our data (seeSTARMethods),

suggesting adequacy of a linear trajectory for our data.

To construct a pseudotemporal trajectory, we considered the

most variant genes ranked by median absolute deviation (MAD)

(Table S2A). Genes in the upper quartile of the MAD distribution

(n = 4,313) were used to place cells along a 1D trajectory that

represents each cell’s likely placement along a continuum of b

cell maturation (Figure 2A). To assess the performance of our

1D PCA-based cell ordering method, we conducted compari-

sons to other ordering methods, namely Monocle (Trapnell

et al., 2014), TSCAN (Ji and Ji, 2016), Embeddr (Campbell

et al., 2015), and DeLorean (Reid andWernisch, 2016). The anal-

ysis revealed higher predicted accuracy of revealing the correct

order of cells and smoother transition of gene expression

through the cells with 1DPCA (STARMethods). As further valida-

tion, we calculated similarity of the cell ordering with DeLorean

and 1D PCA and found similar placement of cells obtained

with the two methods (STAR Methods).

The projection of b cells along the 1D PCA-based trajectory re-

vealed a median placement of samples from each stage that

agreed with the temporal order of the maturation time course

from P1 to P28 (Figure 2B). To further validate the time ordering

method, we projected published RNA-seq data from single

b cells of 3-month-old mice (Xin et al., 2016) onto our pseudo-

temporal trajectory and found that the median of these cells

correctly projected at the end of the pseudotime spectrum

(see STAR Methods). Thus, our analysis generated a refined or-

der of discrete b cell states independent of, but consistent with,

prior knowledge.

Notably, single cells from an individual stage spanned a

large spectrum of the pseudotemporal developmental scale,

indicating significant transcriptional heterogeneity of b cells at

each time point. To allow for comparison of gene expression tra-

jectories between pseudotemporally ordered cells and collec-

tion time point averages, we created five ‘‘pseudotime points’’

(‘‘pseudo-binned’’ cells) by selecting an equal number of cells

for the pseudo-binned point as collected at a given time point.

For example, 84 cells were collected at P1 and 87 cells at P7.

Hence, we considered the first 84 cells along the pseudotempo-

ral trajectory (Figure 2B) as ‘‘pseudo-P1’’ and the next 87 cells as

‘‘pseudo-P7’’ (Figure 2C). Illustrating the transcriptional hetero-

geneity of b cells at each stage, the pseudo-binning revealed

b cells from multiple postnatal stages contributing to each

pseudo-binned time point (Figure S2A).

To validate that the pseudotemporal trajectory accurately cap-

tures transcriptional changes of postnatal b cell development,

we analyzed expression profiles of genes known to be regulated

during b cell maturation in our averaged collection time-specific,

pseudo-binned, and pseudotime-ordered single-cell RNA-seq
Figure 2. 1D PCA Orders b Cells by Maturation Progression

(A) Workflow to generate a 1D PCA-based pseudotemporal trajectory. Raw gen

absolute deviation (MAD) to obtain the most variant genes. Cells were placed alon

of maturation.

(B) Pseudotime ordering of single cells using 1D PCA. Each data point represents

is marked on the pseudotime axis (black arrow).

(C) Samples were assigned to five groups based on time collected (left) or pseud

group contained an equal number of cells to that of the corresponding time-orde

(D) Expression profiles of selected genes ordered by time collected (top), pseud

See also Figures S2 and S3 and Tables S2 and S3.
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data. Consistent with previous bulk transcriptome data (Artner

et al., 2010; Blum et al., 2012; van der Meulen et al., 2012),

expression ofMafb decreased in both our collection time-based

bulk data between P1 and P28 and the reconstructed pseu-

dotemporal single-cell-based trajectories, while expression of

Ucn3 and the regulator of insulin secretion G6pc2 increased

(Figure 2D; Figure S2B). These results indicate that the primary

phenotypic landmarks of b cell maturation were correctly recon-

structed by our pseudotemporal ordering method.

Ordering of Cells Reveals Novel Maturation-Associated
Changes in Gene Expression
We reasoned that the pseudotemporal ordering of cells could

reveal transcriptional characteristics of rare cells within the

b cell population, such as proliferating b cells. Although numbers

of proliferating b cells are known to decline postnatally (Teta

et al., 2005), mRNA levels of the proliferation markers Mki67,

Cdk4, Rfc2, andMcm3 showed little change in bulk samples be-

tween P1 and P28 (Figure 2D; Figure S2B), likely owing to the

small contribution of these cells to the overall transcriptional pro-

file of the bulk samples. By contrast, in the pseudotemporally or-

dered time course, these proliferation genes exhibited declining

expression during b cell maturation (Figure 2D; Figure S2B), sug-

gesting that our pseudotemporal cell ordering method can

resolve transcriptional features of immature proliferative b cells.

In addition to proliferation genes, we observed decreasing

expression of the mitochondrial respiratory chain component

Ndufv1, as well as the amino acid transporter Slc7a2 and amino

acid sensing and mTOR signaling regulator Lamtor5 (Figure 2D;

Figure S2B). These expression changes were not observed in

bulk sample averages, indicating that our time ordering method

can reveal novel molecular features associated with b cell matu-

ration. To more globally assess to which extent gene expression

patterns differ between collection-time- and pseudotime-or-

dered cells, we compared gene expression profiles from collec-

tion time averages to pseudo-binned averages (Figure 2C).

Analysis of increasing and decreasing genes in the transitions

between two consecutive points confirmed that numerous pat-

terns could be identified only by considering pseudotime-or-

dered cells (Figure S3; Tables S3A and S3B). Together, these

findings provide evidence that 1D PCA-based ordering of single

b cells accurately reflects the transcriptional dynamics of b cell

maturation and allows for de novo discovery of gene expression

changes not revealed by population averages.

Metabolic Pathways Are Regulated during the
Reconstructed Maturation Time Course
To identify groups of genes significantly regulated in the pseudo-

temporal trajectory, we examined gene sets, including MSigDB
e expression data were normalized by SVA-seq and processed using median

g a 1D trajectory that represents each cell’s likely placement along a continuum

a single cell colored by age collected. Median placement of cells from each age

otime ordering (right, pseudo-binned time). Each pseudo-binned time-ordered

red point.

o-binned time (middle), or pseudotime (bottom).



annotated pathways, as well as clusters of transcriptionally

correlated genes found in our data (de novo gene sets) (Fig-

ure 3A). Briefly, continuous gene set enrichment analysis

(GSEA) was performed with the aim of testing whether the genes

in each set show coordinated increasing or decreasing expres-

sion during the pseudotemporal trajectory of postnatal b cell

development. Gene sets showing a significant positive or nega-

tive correlation with the pseudotime coordinates, representing

increasing and decreasing groups of genes, respectively, were

selected (false discovery rate [FDR] < 0.25; Table S4). Analysis

of annotated pathways revealed negative correlation with genes

involved in cell cycle control and proliferation with the pseudo-

temporal time course (Figure 3B; Table S4A), confirming the

ability of our time ordering method to resolve transcriptomes of

immature, proliferative b cells. In addition, there was overrepre-

sentation of Gene Ontology (GO) categories associated with

metabolic pathways, such as amino acid metabolism and mito-

chondrial respiration, as well as enrichment of hypoxia and ROS

pathway GO-annotated gene sets. Combined, this suggests that

b cells undergo fundamental changes in metabolism during early

postnatal development.

In addition to analyzing a priori known gene sets, we also

sought to capture molecular features distinguishing immature

andmature b cells thatmight be poorly represented by annotated

pathways. For this, we applied a clusteringmethod to perform de

novo gene set discovery (Fan et al., 2016). Hierarchical clustering

was first applied to all genes expressed (RPKM > 1 in at least

2 cells; n = 13,899). In total, 78 groups of genes were found

andwere scored for significant correlationwith pseudotime coor-

dinates, using the same approach as for annotated pathways

(Table S4B). From this, we identified nine clusters (C1–C9) that

showed significant correlation with the reconstructed trajectory

of b cell maturation (Figure 3C; Table S4B). Each of the nine clus-

ters contained genes that increased and decreased during the

pseudotime course (Figure S4). Cluster C1 contained predomi-

nantly upregulated genes and was enriched for regulators of in-

sulin synthesis and secretion, such as Ins1/2, G6pc2, Iapp, and

Ucn3 (Figures 3C and 3D; Table S4C). Consistent with the obser-

vation that proliferative b cells can be resolved with our time

ordering method (Figure 2D), clusters C2 and C3 were enriched

for genes encoding proteins involved in cell cycle control,

comprising DNA replication, mitotic spindle assembly, and

mitotic checkpoint proteins in cluster C2 and proteins with func-

tions in the p53 andMAPKpathways in cluster C3 (Figure 3D; Ta-

ble S4C). Cluster C4was enriched for immediate early genes (i.e.,

Fos, Jun, Atf3, and Srf), which are regulators of cell growth sig-

nals (Mina et al., 2015). This cluster also contained the known

regulator of postnatal b cell proliferation Pdgfa (Chen et al.,

2011). A striking observation was the downregulation of

numerous genes encoding proteins regulating mitochondrial

function and ROS in cluster C5, including mitochondrial trans-

porters (Slc25a3, Slc25a39), respiratory chain components

(Ndufa5, Cox6a1, Uqcrb), and enzymes for ROS clearance and

protection from oxidative damage (i.e., Prdx2, Sod1, Gpx4) (Fig-

ure 3D; Table S4C). These findings suggest that mitochondrial

respiration and ROS levels are highly regulated during postnatal

b cell development. We further observed concordant regulation

of multiple genes involved in amino acid metabolism in cluster

C6 (Figure 3D; Table S4C), namely a progressive decrease in
the expression of the transmembrane amino acid transporters

Slc7a2 and Slc38a5, as well as Gls and Glud1, which convert

glutamine into glutamate and a-ketogluterate (aKG), respec-

tively. Combined, these findings show that b cell maturation is

associated with fundamental changes in the expression of genes

associated with amino acid uptake and metabolism as well as

mitochondrial respiration and ROS production.

Amino Acid Availability Regulates b Cell Proliferation
Amino acids promote cell proliferation by providing building

blocks for protein and nucleotide synthesis. Based on the

observed decrease in expression of multiple amino acid trans-

porter and metabolism genes during maturation (Figure 4A)

and their co-variation with proliferation genes at the single-cell

level (Figure 4B), we hypothesized that amino acid deprivation

could contribute to the postnatal decline in b cell proliferation.

First, to assess whether amino acid availability to b cells changes

during the early postnatal period, we measured levels of various

amino acids in plasma frommice at P1 and P28. Plasma levels of

most proteinogenic amino acids decreased between P1 and P28

(Figure 4C), indicating environmental changes in b cell amino

acid availability. Next, to determine whether amino acid and

nucleotide availability is limiting for b cell proliferation, we sup-

plemented cultures of islets from mice at P28 with nucleotides

or individual amino acids. Addition of serine, tyrosine, or nucleo-

tides significantly increased proliferation rates of b cells at P28

(Figure 4D), an effect that was not observed for non-b islet cells

(Figure 4E). The results show that amino acid supplementation

can, at least partially, restore b cell proliferation at a time point

when proliferative rates have already declined. Accordingly, sup-

plementation of serine, tyrosine, or nucleotides increased

expression of several proliferation genes, which are downregu-

lated in the pseudotemporal maturation time course (Figure 4F).

Notably, glutamine supplementation failed to enhance b cell pro-

liferation (Figure 4D), which could be because glutamine uptake

rates were significantly lower in islets from mice at P28

compared to P1 (Figure 4G). Combined, these findings suggest

that changes in plasma amino acid levels, as well as b cell amino

acid uptake and metabolism, could cause an amino acid-

deprived state that contributes to the postnatal decline in b cell

proliferation (Figure 4H).

Mitochondrial ROS Promotes b Cell Proliferation
In addition to amino acid metabolic genes, numerous mitochon-

drial genes exhibited a significant decrease in expression during

pseudotemporal maturation (Figure 3D). Therefore, we postu-

lated that b cell mitochondrial membrane potential might

decrease postnatally. Indeed, islets at P28 exhibited lower mito-

chondrial membrane potential than at P1 (Figure 5A; Figure S5A).

Themitochondrial to nuclear DNA ratio was similar in P1 and P28

islets (Figure S5B), indicating that the overall number of mito-

chondria does not change postnatally. These results suggest

that the early postnatal period is associated with a decline in

mitochondrial respiration.

Mitochondrial activity is an important source of ROS produc-

tion. The abundance of ROS is determined by the balance

between ROS production and ROS clearance through multiple

antioxidant enzymes (Figure 5B). Genes encoding antioxi-

dant enzymes decreased during the pseudotemporal b cell
Cell Metabolism 25, 1160–1175, May 2, 2017 1165
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Figure 3. Postnatal b Cell Development Is Associated with Expression Changes of Genes Regulating Amino Acid Uptake and Metabolism,

Mitochondrial Respiration, and ROS Production
(A) Schematic of workflow. To identify genes regulated during pseudotime, we performed continuous GSEA on annotated gene sets and de novo gene sets
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(B) Molecular pathways regulated in pseudotime from annotated gene sets.

(C) Heatmap showing average transcript expression of all genes within de novo gene sets showing significant correlation with pseudotime ordering (C1–C9).

Number of genes in each set is shown on the right.

(D) Heatmaps for each de novo gene set showing expression of selected genes involved in cell proliferation (red), insulin secretion (green), regulation of ROS

(black), mitochondrial function (orange), immediate early genes (purple), and amino acid metabolism (blue) with pseudotime.

See also Figure S4 and Table S4.
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Figure 4. Amino Acid Supplementation Increases b Cell Proliferation

(A) Amino acid transporter and metabolism genes downregulated with pseudotime with Pearson correlation coefficients.

(B) Heatmap showing Pearson correlation of gene expression in all 387 b cells comparing proliferation genes with genes encoding amino acid transporters and

metabolizing enzymesdownregulatedwith pseudotime. Proliferation genes are depicted in rows and aminoacid transporters andmetabolizing enzymes in columns.

(C) Plasma concentration of individual amino acids in mice at P1 (blue) and P28 (red). Data shown as mean ± SEM (n = 4 mice per group).

(D and E) Percentage of EdU+ b cells (D) and non-b cells (E) in islets from mice at P28 supplemented with nucleotides or amino acids.

(F) Quantitative RT-PCR analysis of proliferation genes after supplementation with serine, tyrosine, or nucleotides. mRNA levels in control islets were set as 1.

(legend continued on next page)
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maturation time course (Figure 5C). To determine how the com-

bination of decreased mitochondrial membrane potential and

reduced expression of ROS eliminating enzymes affects overall

b cell mitochondrial ROS abundance, we measured mitochon-

drial superoxide levels in islets from P1 and P28 mice. Despite

reduced expression of antioxidant enzymes, mitochondrial su-

peroxide levels were significantly lower at P28 (Figure 5D).

ROS can enhance cell proliferation, but highly elevated ROS

levels can also induceG2/M cell cycle arrest and reduce cell pro-

liferation (Boonstra and Post, 2004). To determine how ROS af-

fects b cell proliferation, we utilized a genetic model to stably

overexpress the radical scavenger catalase specifically in

b cell mitochondria. We generated mice carrying the RIP-Cre

transgene, Cre recombinase-inducible human catalase (mCAT)

inserted in the ubiquitously active GAPDH locus, and a condi-

tional YFP reporter gene targeted to the Rosa-26 locus

(R26YFP) (hereinafter called mCAT mice) (Figure 5E). The inser-

tion ofmCAT in the GAPDH locus did not affect glucose homeo-

stasis, as determined by glucose tolerance testing (Figure S5C).

Immunofluorescence analysis of YFP in pancreata from mCAT

mice at 6 weeks revealed recombination in�90% of b cells (Fig-

ure S5D). Quantitative RT-PCR confirmed expression of human

CAT mRNA in islets from mCAT mice (Figure S5E). By staining

islets with MitosoxRed, we further confirmed that mCAT mice

exhibit lower levels of ROS than RIP-Cre control mice (Fig-

ure S5F). Analysis of BrdU incorporation and Ki67 staining re-

vealed a significant reduction in the percentage of proliferating

b cells in mCAT mice compared to controls (Figures 5F and

5G; Figure S5G). Accordingly, total b cell mass in mCAT mice

was significantly reduced (Figure 5H). mCAT expression did

not affect b cell identity and did not lead to conversion of b cells

into other islet cell types (Glucagon+GFP+ cells = 1.3% in mCAT

mice versus 0.91% in control mice; no somatostatin+GFP+ cells

were observed) (Figure S5H). b cell apoptosis and glucose-stim-

ulated insulin secretion (GSIS) in islets were similar in mCAT and

control mice (Figures S5I and S5J). These results identify a spe-

cific role for mitochondrial ROS in promoting b cell proliferation

and establishment of normal b cell mass.

Nutrient-Responsive Transcription Factors Mediate
Maturation-Associated Gene Expression Changes
Having identified roles for amino acid availability and ROS in

postnatal b cell proliferation, we next sought to identify the TFs

that mediate maturation-associated gene expression changes

and regulate b cell proliferation. First, to identify the most highly

regulated genes during b cell maturation, we generated a list of

genes positively and negatively correlating with the pseudotem-

poral trajectory (p < 0.01; Figure 6A; Table S5A). These criteria

were met by 54 genes that increased and 3,279 genes that

decreased in expression during pseudotime. Second, to deter-

mine which TFs regulate these genes, we performed cis-regula-

tory analysis, focusing on enhancers identified by the presence

of distal H3K27ac chromatin immunoprecipitation sequencing

(ChIP-seq) signals in mouse islets and annotated TF binding mo-
(G) Glutamine uptake in mice at P1 (blue) and P28 (red).

(H) Schematic summarizing the observed gene expression changes during b cel

In (D)–(G), the data are shown as mean ± SEM of three independent experiments

**p < 0.01, ***p < 0.001.
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tifs at these enhancers (Figure 6A). This analysis revealed binding

site enrichment for TFs of the ETS and basic leucine zipper (bZIP)

families at enhancers of both up- and downregulated genes dur-

ing b cell maturation (Figures 6B and 6C; Table S5B). In addition,

zinc finger (SP1 and Klf TFs), helix turn helix (Rfx TFs), and

CCAAT motifs were among the 20 most highly enriched motifs

at enhancer regions of downregulated genes (Figure 6C; Table

S5B). Binding sites for the previously identified regulators of

b cell maturation, NeuroD1 (Gu et al., 2010) and MafA (Aguayo-

Mazzucato et al., 2011), were also enriched at enhancers of

downregulated genes (Table S5B); however, fewer target se-

quences contained NeuroD1 and MafA binding sites when

compared to ETS, bZIP, and zinc finger motifs.

To identify candidate TFs that could mediate the postnatal

changes in b cell gene expression,weordered TFsbased onpos-

itive and negative correlation of their expression profiles with the

pseudotemporal trajectory. This analysis revealed 202 signifi-

cantly downregulated and two upregulated TFs (p < 0.01).

Consistent with the motif analysis, the top 30 downregulated

TFs comprised multiple members of the ETS (Etv1, Fev), bZIP

(Atf3, Fosb, Fos, Jun, Maff, Junb, Atf4), and zinc finger (Klf10,

Egr1, Klf4, Zfp868, Zfp655, Zbtb10, Egr2) families (Figure 6D).

These ETS, bZIP, and zinc finger TFs are core constituents of a

TF network regulated in response to cellular stress (Espinosa-

Diez et al., 2015). ROS abundance, Ras/MAPK, and mTOR

signaling, which we found to be regulated during postnatal

b cell development (Figures 3B and 5D; Table S4A), are potent

inducers of Srf, Atf3, Atf4, Fosb, Fosl2, Fos, and Jun (Espi-

nosa-Diez et al., 2015). By forming both homo- and hetero-

dimers, these TFs regulate the expression of anti-oxidant genes

and cellular responses to nutrient state, including cell prolifera-

tion. To understand the role of these TFs in postnatal b cell

gene regulation, we performed network analyses using the

STRING database to reveal connections of the TFs with other

genes regulated during the pseudotemporal b cell maturation

trajectory. We then applied a network propagation algorithm

that prioritizes genes in the network based on the strength of

their connections to a starting set of genes (Mulas et al., 2013).

Using the TFs in the network as a starting set (Table S6A), the in-

terest propagation algorithm retrieved an additional set of genes

mostly related to cell proliferation (p = 0.0001, Fisher test) and

mRNA processing (p = 1.85 3 10�7) as their most connected

neighbors (Figure 6E). Proliferation genes with high connectivity

to the TFs Atf3/Atf4, Jun/JunB, Fos/Fosb, Egr1, and Srf included

the regulator of postnatal b cell expansion Cdk4 (Rane et al.,

1999), several components of the pre-replication complex

(Mcm2/3/4/5), and Gsk3b, an important signaling hub in the

regulation of b cell replication (Liu et al., 2010). When the most

relevant connections of genes related to oxidative phosphoryla-

tion were searched through the network (Table S6B), we

retrieved the TFs Jun and Fos (Figure S6). Thus, our motif and

network propagation analyses lend support to the model that

changes in metabolic activity regulate postnatal b cell prolifera-

tion through nutrient-responsive TFs of the Jun/Fos family.
l maturation and effects on proliferation.

. TCA, tricarboxylic acid cycle; Gls, glutaminase; Slc, solute carrier. *p < 0.05,
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Figure 5. Mitochondrial ROS Production Promotes b Cell Proliferation

(A) FACS analysis of TMRM fluorescence intensity. Blue, postnatal day (P) 1 without FCCP; Green, P1 with FCCP; Red, P28 without FCCP; Purple, P28 with

FCCP. Mitochondrial TMRE/MitoTracker Green uptake ratio is shown on the right.

(B) Schematic of pathways regulating ROS clearance by antioxidant enzymes.

(C) Downregulated genes with pseudotime involved in ROS regulation with their Pearson correlation coefficient.

(D) FACS analysis of MitosoxRed fluorescence intensity at P1 (blue) and P28 (red). Mitochondrial MitosoxRed/MitoTracker Green ratios are shown on the right.

(E) Schematic of alleles in RIP-Cre;mCAT;R26YFP mice (mCAT mice). Red triangles indicate loxP sites.

(F andG) Representative immunofluorescence staining for insulin (green), BrdU (red), and DAPI (blue) (F) and quantification of the percentage of b cells expressing

BrdU (G) in 6-week-old control (RIP-Cre) and mCAT mice. White arrows indicate Ins+Ki67+ cells in (F).

(H) Quantification of the b cell area relative to total pancreatic area in 6-week-old mCAT and control mice. Data shown as mean ± SEM of three independent

experiments (A and D) or three mice per group (G and H).

Scale bar, 20 mm. SOD, superoxide dismutase; GR, glutamate receptor; GSH, glutathione; GSSG, glutathione disulfide; GPX, glutathione peroxidase; CAT,

catalase; TRX, thioredoxin; PRX, peroxidase. *p < 0.05, **p < 0.01.

See also Figure S5.
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Figure 6. Transcription Factors and Target

Genes Regulated during Postnatal b Cell

Development

(A) Workflow to identify TFs driving gene expression

changes during pseudotime. Cis-regulatory anal-

ysis was performed on the most significant genes

positively and negatively correlating with pseudo-

time (p < 0.01) followed by annotation of TF binding

motifs at their enhancers.

(B and C) Top TF binding motifs for upregulated

genes (B) and downregulated genes (C) during

pseudotime. Enrichment p values are shown.

(D) The top two upregulated (red) and top 30

downregulated (blue) TFs regulated with pseudo-

time with their Pearson correlation coefficient.

(E) Network of interactomic connections of TFs

regulated during pseudotime with other pseudo-

temporally regulated genes. Green nodes represent

TFs while light blue nodes represent pseudo-

temporally regulated genes. The size of the nodes is

adjusted proportionally to the correlation coefficient

of the gene expression level with pseudotime co-

ordinates. Genes in red are associated with cell

proliferation.

See also Figure S6 and Tables S5 and S6.
Srf Regulates Proliferation Genes in Primary Islets
Based on this model, expression levels of oxidative phosphory-

lation genes, Jun/Fos family TFs, and proliferation genes should

exhibit positive correlation at the single-cell level. To test this

prediction, we selected the cell proliferation, oxidative phos-

phorylation, and TF genes most highly regulated in the pseudo-

temporal trajectory and calculated pairwise correlation coeffi-

cients considering all 387 b cells. The analysis revealed

significant co-variation (p < 0.001) of both oxidative phosphory-

lation and TF genes with proliferation genes (Figure 7A).

We next sought to test whether these TFs could regulate pro-

liferation genes in b cells. Previous studies have shown that Srf is

an upstream activator of Fos, Fosb, Egr1, andNr4a1 (Mina et al.,

2015). We found that Srf itself and its downstream targets are

downregulated during b cell maturation (Figure 6D), suggesting

that Srf could be responsible for the regulation of a large portion

of the maturation-dependent TFs. Moreover, Srf promotes
1170 Cell Metabolism 25, 1160–1175, May 2, 2017
recruitment of ETS TFs to DNA (Hassler

and Richmond, 2001), and ETS TF motifs

were highly enriched in genes regulated

during maturation (Figures 6B and 6C).

To determine the role of Srf in b cell gene

regulation, we overexpressed Srf via lenti-

viral delivery in primary mouse islets and

performed RNA-seq (Figure 7B). Quantita-

tive RT-PCR analysis confirmed a signifi-

cant increase of Srf mRNA (Figure S7A).

To determine whether proliferation genes

are overrepresented among the genes

regulated by Srf, we employed GSEA.

Confirming a role for Srf in the regulation

of proliferation genes, proliferation-associ-

ated genes were expressed at significantly

higher levels after Srf overexpression
(Figure 7C). Furthermore, mRNAs decreasing in expression dur-

ing the pseudotemporal trajectory were enriched in Srf-overex-

pressing islets (Figure 7C). Among the genes significantly

induced by Srf were Fos, Junb, and Egr1 (Figure 7D; Table S7),

demonstrating that Srf acts as an upstream regulator of these

TFs also in islets. The induction of proliferation genes did not

impair insulin secretion, as shown in GSIS assays of Srf-overex-

pressing islets (Figure S7B). These experiments identify Srf as

a regulator of maturation-associated genes in b cells and sug-

gest that postnatally declining Srf levels could contribute to

decreasing b cell proliferation.

DISCUSSION

Here, we have used single-cell transcriptomics to obtain a

comprehensive view of transcriptional changes associated

with mammalian postnatal b cell development. By quantifying
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Figure 7. Srf Regulates Proliferation Genes in b Cells

(A) Heatmap showing Pearson correlation of gene expression profiles in all 387 b cells comparing proliferation genes with top pseudotemporally regulated

oxidative phosphorylation genes and TFs. Proliferation genes are depicted in red, oxidative phosphorylation genes in orange, and TFs in black.

(B) Overview of RNA-seq analysis of lentiviral Srf overexpression in islets at P28.

(C) GSEA plots showing enrichment of proliferation genes regulated during pseudotime (left) and genes downregulated during pseudotime (right) as an effect of Srf

overexpression. RNA-seq data are from three independent transduction experiments. Normalized enrichment score (NES) and enrichment p value are indicated.

(D) RPKM values of TFs Fos, Junb, and Egr1 (top) and proliferation genesMki67, Pcna, andCcne1 (bottom) in RNA-seq data from control and Srf-overexpressing

islets. Data shown as mean ± SEM from three replicates.

(E) Summary of metabolic regulators and effector TFs driving early neonatal b cell proliferation as revealed by reconstructing a pseudotemporal time course of

b cell maturation, experimental validation, and prior literature.

**p < 0.01, ***p < 0.001.

See also Figure S7 and Table S7.
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gene expression in single b cells from different time points, we

ordered cells along a continuous linear molecular trajectory to

resolve the cellular heterogeneity of b cells. This analysis re-

vealed hitherto unknown transcriptional dynamics associated

with the declining proliferative capacity of b cells during post-

natal development. Features we found to be associated with

immature, proliferative b cells are high expression of regulators

of amino acid metabolism and high ROS production as well as

a network of nutrient-responsive TFs (Figure 7E).

The analysis of single-cell RNA-seq data poses unique

computational challenges that necessitate adaptation of existing

workflows and development of new analytical strategies. Here,

we show that 1D PCA-based ordering can be applied to sin-

gle-cell data to accurately predict temporal dynamics of in vivo

biology, as indicated by validation of known markers and higher

accuracy in predicting the collection time of samples or in recon-

structing smoother transitions of gene expression values than

achieved by other methods, including the unsupervised

methods Monocle (Trapnell et al., 2014), TSCAN (Ji and Ji,

2016), and Embeddr (Campbell et al., 2015) and the supervised

method DeLorean (Reid andWernisch, 2016). PCA-based pseu-

dotemporal ordering provides an intuitive representation with a

single path traversing all cells and, unlike minimum spanning

tree-based methods, allows for the addition of new samples

to the scale without changing the established path. Employing

this feature, we show that previously published single b cell

RNA-seq data from 3-month-old mice correctly projected

onto the constructed pseudotemporal trajectory (see STAR

Methods). Projection of these external data onto our trajectory

demonstrated that single b cells from 3-month-old mice exhibit

a degree of heterogeneity comparable to very young mice. Our

analysis implies that 1D PCA-based ordering is well suited for

examining the trajectory of a single cell type along a continuous

course of cell state changes.

Recently, markers unique to subpopulations of b cells have

been identified, andmolecular characterization of these subpop-

ulations has revealed gene expression differences (Bader et al.,

2016; Dorrell et al., 2016). Consistent with these studies, we

observed significant molecular heterogeneity among b cells at

each analyzed time point. Dor and colleagues sorted replicating

b cells based on a marker for S/G2/M phase and compared their

transcriptome to b cells in G0/G1 (Klochendler et al., 2016).

Some features enriched in replicating b cells, including high

expression of components of themitochondrial respiratory chain

(Klochendler et al., 2016), were similar to the features of imma-

ture b cells identified by our study. However, there were also

differences. For example, the TF genes Pdx1 and Nkx6.1 were

expressed at lower levels in replicating b cells but were not regu-

lated in our trajectory of b cell maturation. The differences are not

surprising because our cell orderingmethod does not group cells

solely based on cell cycle characteristics, but associates a given

cell with multiple, potentially independent aspects of transcrip-

tional heterogeneity.

To place our data into the context of findings from recently

published single-cell data of b cells from juvenile and adult hu-

mans (Wang et al., 2016), as well as young and aged mice (Xin

et al., 2016), we compared gene signatures identified in these

studies to genes regulated in our pseudotemporal trajectory.

Wang et al. (2016) reported higher expression of a cell lineage
1172 Cell Metabolism 25, 1160–1175, May 2, 2017
markers in juvenile compared to adult human b cells. We deter-

mined whether these a cell signature genes decrease in expres-

sion during the pseudotemporal trajectory but found no correla-

tion (p = 0.07). This could indicate differences between rodent

and human b cells but could also be due to the specific time win-

dow covered in our study. We found that 34 genes with signifi-

cantly lower expression in b cells from very old mice compared

to 3-month-old mice (Xin et al., 2016) also decreased in expres-

sion in our maturation time course. Among these shared genes

were the TFs Srf, Jun, Fos, Nr4a1, Fosl2, and Fosb, suggesting

that expression of these TFs continues to decrease as b cells

age. Previous studies have shown that Fos overexpression in

islets stimulates b cell proliferation (Ray et al., 2016). Given our

finding that Srf induces Fos and proliferation genes, decreasing

Srf/Fos levels could be an important contributor to declining

b cell proliferation rates early postnatally and during aging.

Two novel features revealed by the pseudotemporal ordering

of b cells were declining expression of amino acid transporters

and metabolizing enzymes and mitochondrial respiratory chain

components during maturation. Our finding that mitochondrial

gene expression decreases during b cell maturation appears,

at first, to contradict a recent study reporting mRNA increases

of oxidative phosphorylation and respiratory chain components

when bulk islet samples of 2- and 6-week-old mice were

compared (Yoshihara et al., 2016). The discrepancy could be ex-

plained by the different time window studied by Yoshihara and

colleagues. Alternatively, it could be due to the increased ability

to detect signatures of rare immature, proliferative b cells due to

single-cell ordering in our study. The latter view is supported by

the lack in regulation of cell cycle regulators and mitochondrial

genes when we considered collection time averages of tran-

script levels (Figure 2D; Figure S2B). Thus, we propose that the

here-identified subpopulation of b cells with high mitochondrial

membrane potential represents a rare immature population

with high proliferative capacity, whereas b cells that upregulate

oxidative phosphorylation genes later postnatally represent cells

with a mature insulin secretory response (Yoshihara et al., 2016).

We identified ROS as an important driver of early postnatal

b cell proliferation and establishment of b cell mass. ROS has

multiple roles in b cells. Discrete and transient increases in

b cell ROS provide an important metabolic signal for GSIS

(Supale et al., 2012). It is possible that decreasing levels of

ROS-eliminating enzymes during maturation help enable the

characteristic stimulus-secretion coupling of mature b cells.

While transient increases in ROS provide an important signal

for insulin secretion, oxidative stress caused by direct exposure

to oxidants or glucotoxicity impairs b cell function (Supale et al.,

2012). Obesity and insulin resistance are often associated with

elevated plasma glucose levels, which, through increased

b cell mitochondrial metabolism, could stimulate ROS produc-

tion. In the insulin-resistant state, b cell proliferation is increased

to help the organism adapt to higher insulin demand. An inter-

esting question for future investigation is whether ROS drives

b cell proliferation during metabolic adaptation.

Atf4, C/EBP, and Ddit3 (Chop), which are downregulated

during the maturation time course (Table S5A), are also down-

stream effectors of the endoplasmic reticulum (ER) stress

pathway. Mild ER stress has been shown to promote b cell pro-

liferation (Sharma et al., 2015), an observation that is consistent



with the pro-proliferative gene regulatory network identified in

this study. It has also been shown that reducing insulin expres-

sion promotes b cell proliferation (Szabat et al., 2016), suggest-

ing that the observed increase in insulin expression during

maturation could further contribute to the proliferative decline

of b cells. However, different from Szabat et al. (2016), who

observed reduced ER stress with low insulin expression, low

insulin levels in our data were associated with high expression

of ER stress markers. How ER stress-related signals are inte-

grated in b cells to control proliferative responses clearly war-

rants further studies. The here-reported RNA-seq datasets

provide a resource for further exploration of molecular signa-

tures that define different b cell states. The ability to examine

the connectivity between genes in unique b cell states will facil-

itate the discovery of targets for therapeutic intervention in

diabetes.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d CONTACT FOR REAGENT AND RESOURCE SHARING

d EXPERIMENTAL MODEL AND SUBJECT DETAILS
B Cell Lines

B Animals

B Mouse Islet Culture

d METHOD DETAILS

B Islet Isolation and FACS Sorting

B Single-Cell and Bulk RNA-Seq Library Preparation

B RNA-Seq Data Processing of Single-Cell and Bulk Li-

braries

B Saturation Analysis

B Cell Ordering

B Evaluation of Cell Ordering Method

B Comparison with Other Cell Ordering Methods

B Assessment of Branching Trajectories

B Comparison to External Datasets

B Analysis of Time-Ordered and Pseudo-Binned Time

Expression Profiles

B Pseudotime Analysis of Gene Sets

B Pseudotime Analysis of Individual Genes

B Identification of Enhancer Regions and Motif Analysis

B Gene Correlation Analysis

B Network Analysis

B Serum Amino Acid Detection

B Glutamine Uptake Measurements

B Measurement of b Cell Proliferation with Amino Acid or

Nucleotide Supplementation

B Mitochondrial Membrane Potential and Mitochondrial

ROS Detection by FACS Analysis

B DJm Analysis

B Mitochondrial DNA Quantification

B Immunohistochemistry, b Cell Mass Measurements,

and TUNEL Assay

B GSIS Assays

B Glucose Tolerance Tests

B Lentivirus Production and Transduction
B RNA-Seq Analysis of Lentivirally Transduced Islets

B Quantitative PCR Analysis

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Quantification

B Statistical Analysis

d DATA AND SOFTWARE AVAILABILITY

B Data

B Software

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures, seven tables, and supple-

mental data and can be found with this article online at http://dx.doi.org/10.

1016/j.cmet.2017.04.014.

AUTHOR CONTRIBUTIONS

C.Z., F.M., and M.S. designed the experiments and strategy for data analysis;

C.Z., T.G., N.M., F.L., and W.J. performed experiments with input from M.S.

and O.S.S.; F.M., C.Z., Y.S., and Y.T. performed data analysis with input

from M.S. and G.W.Y.; M.O.H. provided mice; C.Z., F.M., A.C.C., and M.S.

wrote and edited the manuscript.

ACKNOWLEDGMENTS

We thank P. Rabinovitch for mCATmice. We acknowledge support of S. Naik

at the UCSD Stem Cell Genomics Core for assistance with the fluidigm C1

system, the UCSD Human Embryonic Stem Cell Core for cell sorting, the

UCSD IGM Genomic Center (supported by P30 DK064391) for library prepa-

ration and sequencing, and O. Zagnitko at the Sanford Burnham Prebys

Medical Discovery Institute Cancer Metabolism Core for metabolite mea-

surements. We are grateful to Y. Song, O. Botvinnik, and L. Jamal-Schafer

for advice on single-cell RNA-seq and computational analysis. We also thank

N. Rosenblatt for mouse husbandry and members of the Sander lab for

discussions and comments on the manuscript. This work was supported

by National Institutes of Health grants DK068471 and DK078803 to M.S.,

an Iacocca Family Foundation fellowship to C.Z., and a JDRF postdoctoral

fellowship (3-PDF-2015-83-A-N) to W.J.

Received: September 30, 2016

Revised: February 28, 2017

Accepted: April 13, 2017

Published: May 2, 2017

REFERENCES

Aguayo-Mazzucato, C., Koh, A., El Khattabi, I., Li, W.C., Toschi, E., Jermendy,

A., Juhl, K., Mao, K., Weir, G.C., Sharma, A., and Bonner-Weir, S. (2011). Mafa

expression enhances glucose-responsive insulin secretion in neonatal rat beta

cells. Diabetologia 54, 583–593.

Artner, I., Hang, Y., Mazur, M., Yamamoto, T., Guo, M., Lindner, J., Magnuson,

M.A., and Stein, R. (2010). MafA and MafB regulate genes critical to beta-cells

in a unique temporal manner. Diabetes 59, 2530–2539.

Bader, E., Migliorini, A., Gegg, M., Moruzzi, N., Gerdes, J., Roscioni, S.S.,

Bakhti, M., Brandl, E., Irmler, M., Beckers, J., et al. (2016). Identification of

proliferative and mature b-cells in the islets of Langerhans. Nature 535,

430–434.

Bendall, S.C., Davis, K.L., Amir, A.D., Tadmor, M.D., Simonds, E.F., Chen, T.J.,

Shenfeld, D.K., Nolan, G.P., and Pe’er, D. (2014). Single-cell trajectory detec-

tion uncovers progression and regulatory coordination in human B cell devel-

opment. Cell 157, 714–725.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Guinea pig anti-insulin Dako A0564 RRID: AB_10013624

Rabbit anti-Ki67 Lab Vision Corporation RM-9106-S0 RRID: AB_149919

Rat anti-BrdU Novus Biologicals NB500-169 RRID: AB_10002608

Goat-anti-GFP Abcam ab13970 RRID: AB_300798

Rabbit-anti-MafA Bethyl Labs A300-611A RRID: AB_2297116

Rabbit-anti-Pdx1 Abcam AB47267 RRID: AB_777179

Rabbit-anti-Nkx6.1 LifeSpan BioSciences LS-C143534 RRID: AB_10947571

Mouse-anti-glucagon Sigma G2654 RRID: AB_259852

Mouse-anti-somatostatin BCBC AB1985 RRID: AB_10014609

Alexa 647-conjugated insulin mAb Cell Signaling Technology 9008s

Chemical Reagents, Peptides, and Recombinant Proteins

Collagenase type IV Sigma 639207

Liberase TL Roche 05401020001

Histopaque Sigma 10771

Accumax Life Technologies AM105

Accutase Life Technologies A1110501

SYTOX Blue Dead Cell Stain Life Technologies S34857

TMRM Life Technologies T668

MitoTracker Green Life Technologies M7514

MitosoxRed Life Technologies M36008

L-Proline Sigma P5607

L-Serine Sigma S4311

L-Lysine Sigma L5501

L-Tysorine Sigma T8566

FCCP Thermo Fisher Scientific NC0904863

GS System GS Media Supplement Millipore GSS-1016-C

Critical Commercial Assays

C1 Single-Cell Auto Prep Reagent Kit for

RNA-seq

Fluidigm 100-6201

SMARTer Ultra Low RNA Kit for Illumina

Sequencing

Clontech 634833

Click-iT EdU Alexa 488 Imaging Kit Life Technologies C10337

iScript cDNA Synthesis Kit BioRad 1708891

DNeasy Blood & Tissue Kit QIAGEN 69504

RNeasy Micro Kit QIAGEN 74004

LIVE/DEAD Viability/Cytotoxicity Kit for

Mammalian Cells

Life Technologies L3224

ApopTag Red In Situ Apoptosis Kit Thermo Fisher Scientific S7165

Mouse Insulin ELISA Kit ALPCO 80-INSHU-E10.1

SMART-Seq v4 Ultra Low Input RNA Kit for

Sequencing

Clontech 634889

Nextera XT DNA Sample Preparation Kit Illumina FC-131-1096

Nextera XT DNA Sample Preparation

Index Kit

Illumina FC-131-1002

Advantage 2 PCR Kit Clontech 639207

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

RNa-seq data This paper GEO: GSE86479

H3K27ac_ChIP GEO: GSE68618 GSM1677162

H3K27ac_Input GEO: GSE68618 GSM1677164

Single-cell RNA-seq data of 3-month-

old mice

Xin et al., 2016 GEO: GSE83146

Experimental Models: Cell Lines

HEK293T cells ATCC

Experimental Models: Organisms/Strains

Mouse: RIP-Cre The Jackson Laboratory 003573

RRID: IMSR_JAX:003573

Mouse: R26YFP The Jackson Laboratory 006148

RRID: IMSR_JAX:006148

Mouse: C57BL/6 Charles River Laboratories 027

Mouse: mIns1-H2B-mCherry Benner et al., 2014 N/A

Mouse: C57BL/6.mCAT Dai et al., 2011 N/A

Oligonucleotides

Primers for quantitative PCR This paper See table in Quantitative PCR Analysis

section

Recombinant DNA

pLenti-C-mGFP OriGene PS100071

pLenti-C-mGFP-Srf OriGene MR208120L2

pCMV-R8.74 Addgene 22036

pMD2.G Addgene 12259

Software and Algorithms

FlowJo 8.7 software https://www.flowjo.com/solutions/flowjo RRID: SCR_008520

ImageJ software https://imagej.nih.gov/ij/ RRID: SCR_003070

Prism 5 software (GraphPad Software) https://www.graphpad.com/

scientific-software/prism/

RRID: SCR_002798

STAR https://github.com/alexdobin/STAR N/A

Cufflinks and Cuffdiff http://cole-trapnell-lab.github.io/cufflinks/ RRID: SCR_014597; RRID: SCR_001647

Orange https://orange.biolab.si/, https://bitbucket.

org/biolab/orange-differentiation

N/A

Bioconductor https://www.bioconductor.org/ RRID: SCR_006442

GSEA https://www.broadinstitute.org/gsea RRID: SCR_003199

HOMER http://homer.ucsd.edu/homer/ RRID: SCR_010881

STRING http://string-db.org/ RRID: SCR_005223

Monocle Trapnell et al., 2014 http://cole-trapnell-lab.github.io/

monocle-release/

TSCAN Ji and Ji, 2016 https://github.com/zji90/TSCAN

Embeddr Campbell et al., 2015 https://github.com/kieranrcampbell/

embeddr

DeLorean Reid and Wernisch, 2016 https://cran.r-project.org/web/packages/

DeLorean/index.html

1D Pseudotime Scale This paper See scripts in Data S1
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Maike

Sander M.D. (masander@ucsd.edu).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines
HEK293T cells were maintained in medium A (DMEM containing 100 units/mL penicillin and 100 mg/mL streptomycin sulfate) sup-

plemented with 10% fetal bovine serum (FBS).

Animals
Male and female mIns1-H2B-mCherry mice were used to obtain sorted b cells at P1, P7, P14, P21, and P28 (P1, n = 15 mice; P7,

n = 14; P14, n = 10; P21, n = 4; P28, n = 4). Male and female C57BL/6 mice at P1 and P28 were used to perform the glutamine uptake

experiment and mitochondrial function-related experiments. Male and female C57BL/6 mice at 4-6 weeks were used to perform the

amino acid supplementation experiment and lentiviral transduction experiment. C57BL/6.mCAT mice were kindly provided by Dr.

Peter Rabinovitch. b cell-specific mCAT overexpression mice were generated by crossing C57BL/6.mCAT mice with RIP-Cre

mice and R26YFP mice. Studies were conducted in animals 6 weeks of age and included age- and sex-matched littermate control

mice, which were RIP-Cre mice. To label proliferating b cells, 0.8mg/ml BrdU was supplied in the drinking water to 5-week-old

mice for 7 days. All animal experiments were approved by the Institutional Animal Care and Use Committees of the University of Cal-

ifornia, San Diego. The numbers of animals studied per genotype are indicated within each experiment.

Mouse Islet Culture
Mouse islets were cultured in RPMI 1640 medium containing 10% FBS, 8.3 mM glucose, 2 mM glutamine, and 1% penicillin-

streptomycin.

METHOD DETAILS

Islet Isolation and FACS Sorting
Pancreata of mIns1-H2B-mCherry reporter mice at P1, P7, and P14 were dissected wholly without perfusion and digested with

1mg/ml Collagenase Type IV (Sigma). P21 and P28 pancreata were perfused through the common bile duct with 125 mg/ml Liberase

TL (Roche). Islets were purified by density gradient centrifugation using Histopaque (Sigma), dissociated with Accumax (Life Tech-

nologies) and sorted by FACS on a FACSAria II (BD Biosciences). After excluding dead or damaged b cells and doublets, cells ex-

pressing mCherry were sorted (49.3%, 40.5%, 39.5%, 41.4%, and 40% of pre-gated cells were captured based on mCherry at P1,

P7, P14, P21, and P28, respectively).

Single-Cell and Bulk RNA-Seq Library Preparation
Single sorted b cells were captured onmedium-sized (10–17 mmcell diameter) microfluidic RNA-seq chips (Fluidigm) using the Fluid-

igmC1 system according to the Fluidigm protocol (PN 100-5950). For each C1 experiment, two bulk RNA controls (approximately 250

cells/sample) and a no-cell negative control were processed in parallel PCR tubes, using the same reagent mixes as used on chip.

Multiplexed libraries were prepared using the Nextera XT DNA sample preparation kit (Illumina), and sequenced across 10 lanes of a

HiSeq 2500 (Illumina) using 50-bp single-end sequencing.

RNA-Seq Data Processing of Single-Cell and Bulk Libraries
Single-end 50-bp reads were mapped to the UCSCmouse transcriptome (mm9) by STAR allowing for up to 10 mismatches (which is

the default by STAR). Only the reads aligned uniquely to one genomic location were retained for subsequent analysis. Reads per kilo-

base of transcript per million fragments mapped (RPKM) expression levels of all genes were estimated by Cufflinks using only the

reads with exact matches. Libraries that contained fewer than 1 million reads or for which more than 15% of fragments mapped

to mitochondrial reads were excluded. Single-cell samples with full values for number and fraction of aligned reads are provided

in Table S1. Downstream analysis of RPKM values from both bulk and single-cell RNA-seq datasets was performed with custom

scripts developed using the programming languages Python and R. Several software libraries from Orange and Bioconductor

were adopted for data pre-processing, cell ordering and gene set analysis. First, a moderated log-transformation was applied to

both bulk and single-cell datasets. Specifically, the function logðdij + 1Þ was applied to the expression values, dij representing the

RPKM estimate of the i-th gene in the j-th sample.

To remove unwanted variation, single-cell data was normalized with SVA-seq (Leek, 2014) using a set of ‘‘negative control’’

genes with low variation in the bulk data. Briefly, the top 5th percentile of expressed genes ranked by increasing values of Median

Absolute Deviation (MAD) with high expression levels (average log-transformed RPKM > 5) were first selected as negative

controls from the bulk data. The list was further filtered for genes with high expression levels in the single-cell dataset (log-trans-

formed RPKM > 5 in at least 2 cells). Genes used as negative controls, including known housekeeping genes, are listed in

Table S2B.

The biological model was defined as the global average change in gene expression, with no explicit information on the stage of

each cell provided to SVA-seq. The data corrected for unwanted variations was filtered by selecting the top quartile most variant

genes (n = 4313), ranked according to MAD, whose expression was considered for the inference of cell ordering models.
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Saturation Analysis
To identify the required sequencing depth, we subsampled raw data from bulk cell and individual single-cell libraries. To generate a

single-cell ensemble dataset, raw reads from all the single-cell RNA-seq libraries were bioinformatically pooled to mimic a bulk RNA-

seq experiment. From these three datasets, saturation plots were generated by calculating the number of detected genes (RPKM> 0)

as the number of reads sampled increased.

Cell Ordering
To infer an ordered trajectory of single cells, we adapted a 1D PCA-based unsupervised algorithm originally designed to build a dif-

ferentiation scale, representing transcriptomic progression of bulk samples, as previously described (Mulas et al., 2012) and imple-

mented in the Orange software. Briefly, we applied PCA to the pre-processed data matrix D = ðdj;iÞ with dj;i representing the expres-

sion value of the i-th selected gene in the j-th cell. A real number pðdjÞwas assigned to each cell j by projecting its expression profile to

the first principal component:

pðdjÞ=
Xm
i = 1

dj;i �wi (1)

wi being the elements of the first eigenvector of the covariance matrix DTD and i ranging from 1 to the total number of selected genes

(m = 4313). Projections pðdjÞ, j ranging from 1 to the total number of cells considered (n = 387), were set as pseudotime coordinates

and used to determine the order of cells, so that:

pðdkÞ>pðdlÞ/cellk > celll (2)

Evaluation of Cell Ordering Method
The 1D pseudotime trajectory was compared with orderings obtained by applying other methods, using the same set of selected

genes and all parameters set to default values, unless specified. To evaluate the accuracy of unsupervised algorithms, which do

not use the sample collection time point to infer ordering, Pseudotemporal Ordering Score (POS) was used to count the number

of cells ordered as expected from their true data collection time:

POS=
X

x˛Ti ; y˛Tj j < i

dðpðxÞ; pðyÞÞ (3)

where Ti and Tj are sets of cells from time point i and j, p(x) and p(y) represents the pseudotime coordinates assigned to samples x and

y, and d equals to 0 or to ðj � iÞ=D, if Ti =Tj or if TisTj, respectively. The constant D is computed to rescale POS values in the range

[-1, 1].

To compare the 1D Pseudotime coordinates with orderings inferred with supervised methods, which use sample collection time to

infer pseudotime coordinates, we relied on the ‘‘Roughness’’ of consecutively-placed cells (Reid and Wernisch, 2016). The Rough-

ness score R was computed as a sum of distances of gene expression values between consecutive cells, from the beginning to the

end of the trajectory, as ordered according to their pseudotime coordinates. Distance between a pair of consecutive cells j and j+1

was defined as the difference of their gene expression measurements dj +1 and dj:

R=
1

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

Xn�1

j = 1

distj + 1; j

vuut ; distj + 1; j =
Xm
i = 1

ðdj + 1;i � dj;iÞ2 (4)

dj;i being the expression value of the i-th selected gene in the j-th cell, as described above.

Comparison with Other Cell Ordering Methods
The 1D pseudotemporal trajectory was compared with four additional methods, including unsupervised algorithms, namely TSCAN

(Ji and Ji, 2016), Monocle (Trapnell et al., 2014), and Embeddr (Campbell et al., 2015), and a supervised method based on Gaussian

processes that was recently added to the ‘‘DeLorean’’ R package, hereafter named as DeLorean (Reid and Wernisch, 2016).

The results of the pseudotemporal ordering score (POS) calculations used to evaluate the accuracy of unsupervised algorithms are

reported below.

A confidence interval of the POS score of the PCA-based ordering was estimated with a bootstrap procedure, whereby random

sets of cells were sampled with replacement by maintaining the same proportion of cells from the different stages. These samples

were used as a training set, i.e., to determine weightswi, which were used to project the remaining samples, considered as a test set.

A bootstrap sample contained about 63% of the cells in the original samples, whereas a test set was on average composed of the

37% of the cells. The procedure was iterated for 1000 times, obtaining an estimate of the POS statistic on the test sets. The 90%

confidence interval is shown below and indicates a robust performance of the 1D PCA as a pseudotime ordering method on our

dataset.
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Comparison with Unsupervised Methods

POS score obtained using TSCAN, Monocle Embeddr, and 1D Pseudotime Scale (90% confidence interval = [0.6015–0.7028]).
POS

TSCAN 0.17

Monocle 0.41

Embeddr 0.59

1D Pseudotime Scale 0.65
As the sample collection time point is used by supervised methods to infer pseudotime coordinates, this information could not be

used to evaluate the model generated by DeLorean with POS. For this reason, we evaluated the method by measuring the ‘‘Rough-

ness’’ of gene expression values of consecutively-placed cells in the inferred trajectory. Using the top 20 genes selectedwith ANOVA,

we obtained a Roughness value of 72.9 for DeLorean, while PCA-based ordering scored 72.5, indicating a slightly smoother transition

of gene expression through the cells as projected with PCA. The same conclusion was obtained by applying different distance

measures in place of Roughness to measure the total trajectory distance, namely Euclidean distance, cosine and correlation-based

distances (data not shown). A null distribution was obtained computing the R score on sets of randomly ordered cells. After 1000

iterations, R scores obtained with DeLorean and 1D Pseudotime Scale were compared to the null distribution and p values estimated

as cumulative probabilities for each predicted path. Both 1D Pseudotime Scale and DeLorean orderings indicated a significant ac-

curacy in reconstructing a smooth transition of transcriptomic values (p < 0.001 for both the approaches), with the PCA score being

placed as more extreme compared to the left tail of the null distribution (see figure below). A measure of the similarity of the two or-

derings, as implemented in the TSCANpackage and described in (Ji and Ji, 2016), indicated a similar placement of cells obtainedwith

the two methods (similarity = 0.72).
Comparison with Random Ordering and Supervised Methods

Null distribution of Roughness from random permutations, with red and green arrows depicting Roughness values obtained by the

1D Pseudotime Scale and DeLorean, respectively.

Assessment of Branching Trajectories
TheWishbonemethod (Setty et al., 2016) was applied to explore bifurcating developmental trajectories, with the first three non-trivial

diffusion components used to define a branched trajectory. As a starting point of the trajectory is required by the tool, we selected the

first cell as projected by 1DPCA. As shownwith the dimensionality reductionmethod tSNE (t-distributed stochastic neighbor embed-

ding), a branch was observed using Wishbone, with a limited number of cells deviating from the main trajectory. Similar results were

obtained by choosing the cell with the lowest value of insulin (Ins2) as a starting point, assuming that insulin expression increases

during postnatal maturation, as well as by using different diffusion components (data not shown). By analyzing patterns of interest,
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we confirmed an increase in Ins2 and a decreasing pattern in Atf3 and Srf expression. As shown in the figure below, both branches

identified by Wishbone showed these patterns, with slightly different dynamics in the two.
Cell Association to Different Branches Detected by Wishbone

tSNEmap: cells belonging to themain trajectory are depicted in blue, cells deviating into two different branches are shown in green

and red.
Expression Values of Ins2, Atf3, and Srf Scaled in a (0-1) Range and Displayed across the Cell Trajectory Identified by Wishbone

Following a bifurcation point, two cell trajectories belonging to different branches are depicted with dotted and dashed lines.

Comparison to External Datasets
Bioinformatic comparison with published gene signatures from mouse and human studies was performed using Gene Set Enrich-

ment Analysis (GSEA). A signature of alpha-cell signature genes found to be highly expressed in b cells from juvenile human donors

(Wang et al., 2016) was analyzed for correlation with pseudotime coordinates, usingGSEA as described in detail in the section ‘‘Pseu-

dotime analysis of gene sets.’’ The same approach was used for a signature of differentially expressed genes between b cells from

3-month-old and 26-month-old mice (Xin et al., 2016).

Data from Xin et al. (Xin et al., 2016), including single-cell samples from 3-month-old mice (P90), was normalized with SVA-seq to

allow for comparison of samples from different laboratories, with the same set of negative control genes used for our single-cell data.

The PCAmodel described in Equation 1was used to project expression values of genes selected to infer themodel, corresponding to

the top quartile most variant genes in our single-cell dataset (n = 4313). The 1D Pseudotime Scale including projections of these
Cell Metabolism 25, 1160–1175.e1–e11, May 2, 2017 e6



additional samples is shown below. A quantitativemeasure of the heterogeneity of single cells was computed as the range R spanned

of pseudotime coordinates for both P28 (R = 90.1) and P90 (R = 91.5).
Projection of External Data on the Pseudotime Scale

Cells from 3-month-old mice (P90) and their corresponding median projection are depicted in pink.

Analysis of Time-Ordered and Pseudo-Binned Time Expression Profiles
Genes with log-transformed RPKM > 1 in at least 2 cells, used in all subsequent analysis, were considered to construct time-ordered

and pseudo-binned-time expression profiles. The average of samples from each of the five time points was considered for each gene

to obtain time-ordered profiles. Pseudotime profiles were constructed by assigning pseudotime-ordered cells to five bins, each of

them with size equal to the number of cells collected at the corresponding time point.

Pseudotime Analysis of Gene Sets
Hallmarks and curated gene sets from KEGG, REACTOME and BioCarta part of the MSigDB compendium (http://software.

broadinstitute.org/gsea/msigdb/index.jsp) were used as annotated gene sets. Genes with log-transformed RPKM > 1 in at least

2 cells were clustered (Hierarchical clustering based on absolute values of Pearson correlation, Ward method) to obtain de novo

gene sets. The Dynamic Tree Cutting method (R package ‘cutreeDynamic’ with minimum cluster size = 10, method = ‘‘hybrid,’’

deepSplit = 4) was used to obtain clusters. The GSEA tool (https://www.broadinstitute.org/gsea) for continuous phenotypes was

used to identify annotated and de novo genes with expression profiles correlated with the pseudotime trajectory. GSEA was run

with the vector of pseudotime coordinates p=pðd1Þ;.;pðd387Þ set as the ‘‘continuous phenotype’’ and significant gene sets with

coordinated increasing or decreasing activity were selected with corrected P value < 0.25.

Pseudotime Analysis of Individual Genes
Genes with log-transformed RPKM > 1 in at least 2 cells were ranked based on their correlation with pseudotime coordinates. Sig-

nificance of correlation values was assessed on a set of 1000 randomly permuted gene expression profiles.

Identification of Enhancer Regions and Motif Analysis
To identify enhancer regions, we used previously published H3K27ac ChIP-seq datasets (GSM1677162 and GSM1677164). ChIP-

seq peak identification, quality control, and motif analysis were performed using HOMER. Briefly, genome enriched regions of

H3K27ac were identified using the ‘findPeaks’ command in HOMERwith settings of ‘–style histone’: 500 bp peaks with 3-fold enrich-

ment and 0.01 FDR significance over local tags. To identify active enhancers of target genes, enhancer sites defined by ChIP-seq

enrichment of H3K27ac were filtered by the following criteria: (1) regions were at least 3 kb away from annotated TSSs; (2) regions

were within 200 kb from annotated target gene TSSs. For motif analysis, transcription factor motif finding was performed on ± 200 bp

relative to the peak center defined by ChIP-seq analysis using HOMER. Peak sequences were compared to random genomic frag-

ments of the same size and G/C content was normalized to identify motifs enriched in the ChIP-seq targeted sequence.

Gene Correlation Analysis
To identify co-variation of proliferation-related genes with other selected genes, we measured Pearson correlation for each pair of

pseudotime-ordered gene expression profiles in the selected categories. Proliferation-related genes retrieved from previous anno-

tation (Buettner et al., 2015) were ranked by correlationwith pseudotime coordinates and the 30most downregulatedwere compared

with genes involved in amino acid metabolism of interest, identified from the pseudotime analysis of individual genes. Similarly, the

top 30 regulated among transcription factors (AnimalTFDB database, http://bioinfo.life.hust.edu.cn/AnimalTFDB1.0/) and oxidative

phosphorylation-related genes (Gene Ontology database, http://amigo.geneontology.org/amigo/term/GO:0006119) were

compared to proliferation genes. For each comparison, statistical significance of the global correlation of each category with prolif-

eration geneswas assessed by referring the average correlation of genes in the two groups to a null distribution obtainedwith random

sampling, as described in the Statistics section.
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Network Analysis
Links between the top 90th percentile of pseudotime-regulated genes (n = 1389) were retrieved through the STRING repository

(version 10.0, http://string-db.org/). Only the most reliable protein associations were retained (combined confidence score > 0.7)

and used to assign weights to each network link. Genes with annotation in the STRING database (n = 1356) were prioritized using

an interest propagation algorithm described previously (Mulas et al., 2013). Briefly, given a set of nodes of interest Gint, the method

assigns ‘propagation scores’ to all the other nodes, with values proportional to their connectivity to Gint in the network. Transcription

factors selected from the AnimalTFDB database (http://bioinfo.life.hust.edu.cn/AnimalTFDB1.0/ ) and oxidative phosphorylation-

related genes from the GOdatabase (http://amigo.geneontology.org/amigo/term/GO:0006119) were used separately as initial nodes

of interest and the top 90th percentile of the distribution of propagation scores obtained was used as a threshold to select the most

relevant genes. Proliferation-related genes included in the network were retrieved fromprevious annotation (Buettner et al., 2015) and

genes involved in mRNA processing were identified from their correspondent GO category (http://amigo.geneontology.org/amigo/

term/GO:0006397).

Serum Amino Acid Detection
Serum glutamine concentrations from P1 and P28 mice (n = 4) were measured using a YSI 2950 enzymatic analyzer. To measure

other amino acids, 5 mL serumwasmixed by vortexing first with 200 mLmethanol (50% v/v in water with 20 mML-norvaline as internal

standard) and second with 100 mL of chloroform before centrifugation for 10 min at 13,000 rpm. The upper (polar) phase was dried,

derivatized, and analyzed. Amino acids in samples were quantified against varied amounts of standards run in parallel using

MetaQuant.

Glutamine Uptake Measurements
Overnight recovered P1 and P28 islets were washed in PBS, and then plated (50 islets/time point in triplicate) into 96 well plates in

100 mL culture medium containing 2 mM glutamine. After 24 hr, supernatant and islets were collected separately. Wells without cells

containing only media served as controls. Supernatants were centrifuged (10000 rpm for 10 min, 4�C) and then stored at�80�C until

analysis. Islets were lysed in RIPA buffer and protein concentrations for each well containing supernatant were measured. Glutamine

concentrations in supernatants were measured using a YSI 2950 enzymatic analyzer. Glutamine uptake rates were calculated by

subtracting experimental glutamine concentrations from control sample glutamine concentrations and expressed as pmol of gluta-

mine per hour per microgram of cell protein. Three independent experiments were performed.

Measurement of b Cell Proliferation with Amino Acid or Nucleotide Supplementation
Isolated islets from 4- to 6-week-old C57BL6mice were cultured overnight, and then supplied with fresh medium supplemented with

1 mM of proline, serine, lysine, tyrosine (Sigma), glutamine for a total of 3 mM (Life Technologies), or nucleotides (1X GS Media Sup-

plement, Millipore). Islets were then cultured for an additional 48 hr with the thymidine analog EdU, which was added to the medium

for the last 24 hr. Cell proliferation was detected with Click-iT EdU Alexa Fluor 488 (Life Technologies) and rabbit Alexa Fluor-647-

conjugated insulin mAb (Cell Signaling Technology) using BD FACSCanto II, and analyzed by Flowjo 8.7. Three independent exper-

iments were performed.

Mitochondrial Membrane Potential and Mitochondrial ROS Detection by FACS Analysis
P1 and P28 islets were allowed to recover overnight, dissociated with trypsin-EDTA treatment for 5 min at 37�C, and washed twice

with Krebs solution containing 4 mM glucose. For detection of mitochondrial membrane potential, dissociated islet cells were incu-

bated with 10 nM of the fluorescent probe TMRM (Life Technologies) and 200 nM MitoTracker Green (Life Technologies) for 1 hr at

37�C in Krebs solution containing 4 mM glucose with or without 50 mM FCCP (Sigma). For detection of mitochondrial ROS, dissoci-

ated islet cells were incubated with 5 mMMitosoxRed (Life Technologies) and 200 nMMitoTracker Green (Life Technologies) for 1 hr

at 37�C in Krebs solution containing 4 mM glucose. Cells were washed with PBS once, scored by FACS using BD FACSCanto II, and

analyzed by Flowjo 8.7. TMRM and MitosoxRed levels were normalized to MitoTracker Green. Three independent experiments were

performed.

DJm Analysis
P1 and P28 islets were dispersed with accutase (Life Technology A1110501) for 10 min, plated on Greiner Cellview glass bottom

10 mm 4-compartment confocal dishes, and cultured overnight for recovery. The following day, dispersed cells were stained for

45 min with 15 nM TMRE (Life Technologies) and 200 nMMitoTracker Green in Krebs buffer under 4 mM glucose concentration after

which they were washed twice with buffer containing 15 nM TMRE and 4 mM glucose. The cells were imaged on a Zeiss LSM880

confocal microscope. Then glucose was supplemented for a total of 16 mM glucose and cells were imaged at 30 min. Subsequently,

50 mM FCCP was added and cells were imaged at 10 min. The resulting images were quantified for fluorescence intensity in the red

and green channels (TMRE and MitoTracker Green, respectively). Live cells were defined as having an at least 10% increase in the

TMRE/MitoTracker Green ratio in 4 mMglucose compared with FCCP treatment. Relative change in DJmwas calculated by the fold

change of TMRE/MitoTracker Green ratio in 16 mM glucose over 4 mM glucose.
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Mitochondrial DNA Quantification
To measure mitochondrial DNA copy number, total DNA from mCherry-sorted b cells from P1 and P28 mice was isolated using

DNeasy Blood & Tissue Kit (QIAGEN) according to the manufacturer’s instructions. Mitochondrial DNA (mtDNA) and nuclear DNA

(nDNA) content were determined by real-time PCR using specific primers for the mitochondrial cytochrome c oxidase subunit

II (Cox2) gene and the nuclear gene Rsp18. The ratio of mtDNA to nDNA content was calculated for each time point. Experiments

were performed four times.

Immunohistochemistry, b Cell Mass Measurements, and TUNEL Assay
Mouse pancreata were analyzed by immunostaining using the following primary antibodies: guinea pig anti-insulin (Dako), 1:1000;

rabbit anti-Ki67 (Thermo Fisher Scientific), 1:200; rat anti-BrdU (Novus Biologicals), 1:250; goat-anti-GFP (Abcam), 1:1000; rabbit-

anti-MafA (Bethyl Labs), 1:1000; rabbit-anti-Pdx1 (Abcam), 1:500; rabbit-anti-Nkx6.1 (LifeSpan BioSciences), 1:250; mouse-anti-

glucagon (Sigma), 1:100; mouse-anti-somatostatin (BCBC), 1:2000. Primary antibodies were detected with donkey-raised second-

ary antibodies conjugated to Cy3 or Cy5, (Jackson ImmunoResearch), and nuclei were counterstained with DAPI (Sigma) at

0.1 mg/ml. Images were captured on a Zeiss Axio Observer Z1 microscope with an ApoTome module and processed with Zeiss

AxioVision 4.8 software. For b cell mass measurements, images covering an entire pancreas section were tiled using a Zeiss Axio

Oberver Z1 microscope with the Zeiss ApoTome module. The insulin+ and total pancreas areas were measured using ImageJ

and b cell mass was calculated as follows: Insulin+ area/total pancreatic area. For examination of apoptosis, TUNEL analysis was

performed using ApopTag Red In Situ Apoptosis Kit as specified by the manufacturer (Thermo Fisher Scientific).

GSIS Assays
Islets were allowed to recover overnight, washed and pre-incubated for 1 hr in Krebs solution containing 2.8 mM glucose.

Afterward, groups of 10 islets were transferred to a 96well dish into solutions of 2.8mMglucose or 16.8mMglucose. After incubation

for 1 hr, supernatant was collected and islets were lysed overnight in a 2% acid:80% ethanol solution. Insulin was then measured in

supernatants and lysates using a mouse insulin ELISA kit (ALPCO). Secreted insulin was calculated as percentage of total insulin

content.

Glucose Tolerance Tests
Mice were fasted for 6 hr after the onset of the light phase. Basal blood glucose was sampled at 0 min, and glucose administered by

intraperitoneal injection at a dose of 1.5mg/kg of 10%glucose. Blood samples were taken at 20, 40, 60, 90, and 120min after glucose

administration.

Lentivirus Production and Transduction
GFP-tagged lentiviral plasmid (Origene PS100071) or GFP-tagged Srf lentiviral plasmid (Origene MR208120L2) was transfected with

pCMV-R8.74 (Addgene 22036) and pMD2.G expression plasmid into HEK293T cells. Transfection was performed using PEI solution

(1 mg/ml) and lentiviral supernatants were collected at 48 hr and 72 hr after transfection. The lentivirus was further concentrated by

ultracentrifugation at 4�C. The titer ranged from 5x108 to 1x109 TU/ml.

Lentiviral transduction was carried out as follows: after isolation, islets were cultured overnight and treated with accutase for

10min. 5x103 dispersed cells were seeded per well in a 96 v-bottom plate (Fisher Scientific, 12565481) and transducedwith lentivirus

at MOI 5-6 in the presence of 0.8 ng/ml polybrene. Single cells were re-aggregated by centrifugation at 365 g for 5 min, and medium

was changed after overnight culture.

RNA-Seq Analysis of Lentivirally Transduced Islets
Cells were collected 72 hr after transduction and RNA was extracted using RNeasy Micro Kit (QIAGEN). Three biological

replicates of RNA-seq libraries were generated with SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing (Clontech) and Illumina

Nextera XT DNA sample preparation kit (Illumina), multiplexed and sequenced on the HiSeq 4000 system (Illumina) using 50 bp sin-

gle-end sequencing. On average, 25 million reads were generated from each library. Reads were mapped as described above by

Cufflinks. Differential gene expression in Srf-overexpressing and control samples was assessed by Cuffdiff. Gene sets for GSEA

were defined as: i) genes up- or downregulated along pseudotime (p < 0.05); ii) proliferation-related genes regulated during pseudo-

time (p < 0.05).

Quantitative PCR Analysis
DNA or cDNA from islets were mixed with SYBR GreenERTM qPCR Supermix Universal (Thermo Fisher Scientific) according to

manufacturer’s protocol. Reactions were performed in a 96-well format using Biorad PCR system. Relative mRNA levels were
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calculated using the comparative CT method and normalized to Calm1 mRNA. A complete list of primers and sequences can be

found below.
Primer Name Sequence

ms-Calm1-F GCTGCAGGATATGATCAACG

ms-Calm1-R GCTGCAGGATATGATCAACG

ms-Srf-F CTGACAGCAGTGGGGAAAC

ms-Srf-R GCTGGGTGCTGTCTGGAT

ms-Cox2-F ATAACCGAGTCGTTCTGCCAAT

ms-Cox2-R TTTCAGAGCATTGGCCATAGAA

ms-Rsp18-F TGTGTTAGGGGACTGGTGGACA

ms-Rsp18-R CATCACCCACTTACCCCCAAAA

ms-Pim2-F GAGGCCGAATACCGACTTG

ms-Pim2-R CCGGGAGATTACTTTGATGG

ms-Pim3-F ACATGGTGTGTGGGGACAT

ms-Pim3-R ATAAGCTGCTGGCACTCTGG

ms-Sik1-F GACGGAGAGCGTCTGATACC

ms-Sik1-R GGTCCTCGCATTTTTCCTC

ms-Plk2-F TGAAGGTGGGAGACTTTGGT

ms-Plk2-R TGGGGTTCCACATATTGTTCT

ms-Apitd1-F CCGCAGGAGTTCTCTCACC

ms-Apitd1-R GAGACAGCCGACCGTGTAGT

hu-Catalase-F TCATCAGGGATCCCATATTGTT

hu-Catalase-R CCTTCAGATGTGTCTGAGGATTT
QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification
For b cell mass measurements, four to six sections, at least 100 mm apart, from each pancreas were tiled using a Zeiss Axio Oberver

Z1microscope with the Zeiss ApoTomemodule. The insulin+ and total pancreas areas were measured using ImageJ and b cell mass

was calculated as follows: Insulin+ area/total pancreatic area. For all quantifications of proliferation, apoptosis and markers, at least

500 b cells per mouse were examined.

Statistical Analysis
Experimental Comparisons

All experiments were independently repeated at least three times. Results are shown asmeans ± SEM. Statistical analyses were con-

ducted using Prism 5 software (GraphPad Software). Statistical comparisons between groups were analyzed for significance by an

unpaired two-tailed Student’s t test or paired two-tailed Student’s t test. Glucose tolerance testing significance was determined by

one-way ANOVA. Differences are considered significant at p < 0.05. The exact values of n, statistical measures (mean ± SEM) and

statistical significance are reported in the figures and in the figure legends.

GSEA Significance

Significance for GSEA results was assessed with 1000 permutations and FDR was used to correct for multiple testing. The exact

thresholds used for FDR-based selection are specified in the Results.

Permutation-Based Significance

Random sampling and bootstrap approaches were used to obtain null distributions and confidence intervals, respectively, with the

number of iteration set to 1000. Null distributions of different scores, including Roughness, fold change of consecutive time (and

pseudo-) time points and gene correlations with pseudotime, were obtained by computing the scores on randomly ordered samples.

Null distributions for average correlations of gene groupswere obtained by randomly sampling sets of genes from the data, with sizes

equal to the number of genes in each group under study. For each score tested, a P value was estimated as a cumulative probability

from the corresponding null distribution. The confidence interval of the POS score for the PCA-based ordering was estimated with a

bootstrap procedure, whereby random sets of cells were sampled with replacement bymaintaining the same proportion of cells from

the different stages.
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Significance of Proportions

Significance of overlaps between lists of genes resulting from the network propagation analyses with proliferation- ormRNAprocess-

ing-related genes was assessed through a one-tailed Fisher Exact test, as implemented in the Python library scipy.stats.

DATA AND SOFTWARE AVAILABILITY

Data
The accession number for the single-cell RNA-seq and bulk RNA-seq data reported in this manuscript is GEO: GSE86479.

The accession number for the H3K27ac ChIP-seq and input datasets is GEO: GSE68618.

The accession number for the single-cell RNA-seq data from 3-month-old mice is GEO: GSE83146.

Software
Custom R and Python scripts are provided as Data S1.
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