




Boland et al., Sci. Immunol. 5, eabb4432 (2020)     21 August 2020

S C I E N C E  I M M U N O L O G Y  |  R E S E A R C H  R E S O U R C E

8 of 13

been previously identified in thymic innate memory CD8+ T cells 
(42) and in vitro–differentiated CD8+ T cells (39) using chromatin 
immunoprecipitation sequencing approaches, but such approaches 
are not feasible in intestinal CD8+ TRM cells because of technical 
challenges with cell numbers. Moreover, the low numbers of intestinal 
CD8+ T cells that can be recovered in commonly used intestinal 
inflammation models precluded their use as a model system with 
which to identify Eomes gene targets in intestinal CD8+ TRM cells. 

Thus, to identify putative gene targets of 
Eomes specifically in intestinal CD8+ TRM 
cells, we applied the assay for transposase-
accessible chromatin using sequencing 
(ATAC-seq) in the context of the lym-
phocytic choriomeningitis virus (LCMV) 
model system in which intestinal CD8+ 
TRM cells have been widely studied (43). 
P14 CD8+CD45.1+ T cells, which have 
transgenic expression of a TCR that 
recognizes an immunodominant epitope 
of LCMV, were adoptively transferred into 
congenic CD45.2+ wild-type recipient 
mice subsequently infected with LCMV 
1 day later. Donor CD45.1+ P14 T cells 
were FACS-sorted from the small intes-
tine epithelial lymphocyte compartment 
of recipient mice at 7 and 30 days after 
infection and processed for ATAC-seq. 
We searched for predicted Eomes binding 
motifs in accessible enhancer and pro-
moter regions and looked for overlap of 
these genes with the T10 CD8+ TRM cluster 
transcriptional signature. These analyses 
confirmed known Eomes gene targets such 
as Ifng and Gzma (37) but identified other 
molecules, such as Klrg1, a killer lectin 
receptor, and Icos, a costimulatory molecule, 
as putative Eomes gene targets (Fig. 8C 
and table S9). To test whether ectopic 
expression of Eomes resulted in increased 
expression of putative gene targets that 
we identified by ATAC-seq analysis, we 
transduced congenically distinct CD8+ 
T cells with control (CD45.1) or Eomes 
(CD45.1.2) retroviral constructs before 
adoptive transfer into recipient mice 
(CD45.2) subsequently infected with 
LCMV and used flow cytometry to ex-
amine the protein expression of several 
putative targets in intestinal CD8+ T cells 
at 7 days after infection. Compared with 
intestinal CD8+ T cells expressing con-
trol constructs, intestinal CD8+ T cells 
expressing Eomes constructs expressed 
higher levels of interferon-(IFN), 
granzyme A, and KLRG1 protein and 
lower levels of inducible T cell costimu-
lator (ICOS) protein (Fig. 8D). Together, 
these findings suggest the possibility that 
in UC, up-regulation of key factors such 

as Eomes in intestinal CD8+ TRM cells may promote their conver-
sion into a pathogenic state exhibiting enhanced inflammatory and 
cytolytic properties.

DISCUSSION
Recent studies have begun to apply single-cell transcriptomic 
approaches to investigate the mechanisms underlying the complex 

Fig. 7. Cells from a CD8+ TRM cell cluster with enhanced inflammatory properties are increased in affected 
colonic tissue from patients with UC. (A) Violin plots of selected genes differentially expressed by the four CD8+ 
TRM cell clusters (T1, T2, T10, and T14). (B) Pathway analysis of genes differentially expressed by the T10 CD8+ 
TRM cluster compared with all other CD8+ TRM clusters. (C) Representative hematoxylin and eosin–stained images of 
unaffected and affected colonic tissue from a patient with UC used for RNA in situ hybridization (ISH) analyses 
shown in (D) and (E). Representative ISH images of affected colonic tissue (D) and quantitation of CD8+CD69+EOMES+ 
cells from unaffected and affected regions of colonic tissue from patients with UC (n = 5) (E). Paired Student’s t test 
(E). **P < 0.01.
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dysregulation of the immune system in 
IBD (18, 19). Our integrated single-cell 
transcriptomic and antigen receptor 
sequencing analyses have resulted in sev-
eral insights into the immunobiology of 
UC. First, we annotated multiple clus-
ters of plasma cells in intestinal tissue 
and observed that BCR clonotypes were 
shared among cells from many of these 
clusters, raising the possibility that plas-
ma cells may transit among a spectrum 
of states. Plasma cells from patients 
with UC exhibited a marked shift toward 
a specific IgG1+ cluster (B1), in contrast 
to plasma cells from healthy individuals, 
which were predominantly IgA+, in 
accordance with early immunohisto-
chemical findings first reported in the 
1970s (44) and confirmed in subsequent 
studies (45–47). It has been shown that 
colitogenic intestinal bacteria can be coat-
ed by high levels of IgA (48), suggesting 
that the ability of healthy individuals to 
produce IgA in the gut microenvironment 
may enable them to control specific 
inflammatory commensals that might 
otherwise initiate intestinal inflamma-
tion. Alternatively or in addition, IgG 
antibodies may themselves be pathogenic 
because it was previously proposed that 
an increase in anticommensal IgG anti-
bodies in patients with UC may lead to 
inflammation through IgG-mediated 
FcR receptor activation and type 17 
immunity (45).

Second, we envision that the current 
dataset can be used as a starting point to 
identify genes previously unknown to 
be dysregulated in IBD in an immune 
cell type–specific manner for further 
investigation. As an example, we observed 
an enrichment of Treg cells (contained 
within cluster T7) in patients with UC, 
raising the possibility that these cells 
might be functionally impaired despite 
being present in adequate numbers. 
Further analyses revealed a number of 
transcripts that were differentially ex-
pressed between Treg cells derived from 
healthy individuals compared with those 
from patients with UC, many of which 
were not previously known to have a 
role in Treg cells. We selected ZEB2 for 
further study, which, owing to its ob-
served up-regulation in Treg cells from 
patients with UC, was hypothesized to 
impair Treg cell function; knockdown or 
deletion of Zeb2 resulted in enhanced 
murine Treg cell suppressive activity. This 

Fig. 8. Eomes may regulate the T10 CD8+ TRM cluster transcriptional program. (A) Percent weight change observed 
with CD8 depletion (n = 5) versus isotype control (n = 5) in an IL-10-deficient piroxicam-induced enterocolitis mouse 
model, expressed as percent of weight at the start of the experiment. Error bars indicate SEM. Data are representative of 
two independent experiments. (B) Percent weight change observed in RAG1-deficient mice receiving 5 × 105 FACS-sorted, 
green fluorescent protein–positive control–retrovirus (RV) (n = 13) or Eomes-RV (n = 8) CD8+ T cells and treated with 
DSS, expressed as percent of weight at the start of the experiment. Error bars indicate SEM. Data are representative of 
two independent experiments. (C) ATAC-seq tracks with putative Eomes motifs (indicated with red lines) near accessible 
promoter regions for selected genes are shown. P14 CD8+ T cells were adoptively transferred into congenic recipients 
subsequently infected with LCMV Armstrong; cells were FACS-sorted at days 7 and 30 after infection (two technical 
replicates per time point) and subjected to ATAC-seq. Representative day 7 post-infection ATAC-seq tracks are shown. 
(D) P14 CD8+ T cells were transduced with control-RV (CD45.1) or Eomes-RV (CD45.1.2) constructs and adoptively 
transferred into congenic recipients (CD45.1.2) subsequently infected with LCMV Armstrong (n = 5). Expression of selected 
proteins by control-RV– versus Eomes-RV–expressing CD8+ T cells was analyzed by FACS at 7 days after infection; 
staining of naïve CD8+ T cells from an uninfected mouse are shown as a control. Data are representative of two independent 
experiments. PE, R-phycoerythrin; PE-Cy7, R-phycoerythrin-cyanine7 tandem fluorochrome; BV421, Brilliant Violet 421; 
BV605, Brilliant Violet 605. Unpaired Student’s t test (A and B) or paired Student’s t test (D). *P < 0.05, **P < 0.01, and 
***P < 0.001.
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finding, together with the observations that the expression of several 
previously known regulators of murine Treg cells was also altered in 
Treg cells from patients with UC, suggests the potential value of the 
dataset in selecting putative regulators of healthy versus disease Treg 
cell states for further study.

A third insight that derives from these analyses is the finding of 
heterogeneity among CD8+ TRM cells in the human intestine. TRM 
cells are a subset of memory T lymphocytes that reside within 
tissues and provide essential protection at body surfaces (23), but to 
date, there has been only limited evidence for heterogeneity among 
murine (49, 50) and human TRM cells (51). TRM cells have been 
implicated in human autoimmune diseases such as vitiligo and 
psoriasis (52, 53), and recent studies have suggested a role for CD4+ 
TRM cells (24, 25) in IBD. We detected four transcriptionally distinct 
clusters of CD8+ TRM cells, one of which (T10) contained cells 
that had undergone significant clonal expansion predominantly in 
patients with UC. The finding that TCR clonotypes were shared 
among cells from the four CD8+ TRM cell clusters supports the 
hypothesis that these clusters represent states between which CD8+ 
TRM cells transit; in the setting of UC, we observed a marked shift of 
cells toward the putative T10 differentiation state. Moreover, the 
observation that increased numbers of cells in the peripheral blood 
that were clonally related to T10 CD8+ TRM cells in the intestine 
were increased in UC is intriguing in light of recent reports that 
murine and human TRM cells can exit the tissue and recirculate 
(54, 55). Together, our data suggest a role for CD8+ TRM cells in UC 
and raise the possibility that during IBD exacerbations, CD8+ TRM 
cells may exit the intestinal tissue and recirculate, providing a po-
tential explanation for the tendency for IBD to affect multiple organ 
systems outside of the gastrointestinal tract.

Compared with cells in the other TRM states, cells in the T10 
differentiation state expressed higher levels of genes encoding 
molecules that confer inflammatory and effector properties, such as 
cytokines, cytolytic granules, and killer lectin receptors. Our analyses 
nominate the T-box transcription factor Eomes as a regulator of the 
putative T10 CD8+ TRM cell transcriptional state. Eomes and T-bet 
are highly homologous members of the T-box family of transcrip-
tion factors and are highly expressed by activated CD8+ T cells and 
resting and activated NK cells (37). Eomes and T-bet have coopera-
tive functions (56) in inducing effector functions and enhanced 
expression of CD122, the receptor controlling IL-15 responsiveness, 
which underlies proliferative renewal after clearance of microbial 
pathogen (57, 58). Eomes also has functions that are distinct from 
those of T-bet, such as promoting self-renewal of long-lived memory 
cells (59), and has been shown to be up-regulated in CD8+ T cells 
during chronic infection (60). In the context of murine skin TRM 
cell differentiation in response to microbial infection, both Eomes 
and T-bet undergo initial up-regulation but are subsequently down-
regulated to enable responsiveness to transforming growth factor– 
signaling and continued TRM cell differentiation (61). Eomes is 
extinguished by 2 to 4 weeks after infection, at least in skin TRM 
cells, but low levels of T-bet are necessary for the maintenance of 
CD122 and survival of TRM cells (61–63); it is therefore intriguing 
that cells in the putative T10 CD8+ TRM transcriptional state ex-
pressed high levels of Eomes. This T10 CD8+ TRM cluster, which 
exhibited high expression of transcription factors such as EOMES, 
appears to be transcriptionally distinct from a previously described 
CD8+IL17A+ T cell cluster (19), which expressed high levels of 
RORA and RORC, identified by scRNA-seq; moreover, it remains 

unknown how the T10 CD8+ TRM cluster described here relates to a 
CD3+CD4−CD8−IL-17A+ T cell cluster recently identified using 
mass cytometry (9). Future work will further investigate the degree 
of heterogeneity among intestinal CD8+ T cells with respect to func-
tion and plasticity in health and IBD.

Our data suggest a model in which TRM cells exist in equilibrium 
across several differentiation states in the healthy condition. In the 
setting of UC, TRM cells may up-regulate Eomes, which binds to a 
number of downstream gene targets. On the basis of our ATAC-seq 
analyses in murine intestinal CD8+ T cells, putative gene targets 
may include inflammatory cytokines (Ifng), cytolytic granules 
(Gzma), chemokines (Ccl3, Ccl4, and Ccl5), molecules that promote 
survival (Bach2, Cd27, and Il2rb), killer cell lectin receptors (Klrb1, 
Klrc1, Klrd1, Klrg1, and Krk1), costimulatory molecules [Tnfrsf18 
(GITR), Tnfrsf4 (OX40R), and Icos], and trafficking molecules such 
as Crtam (64). A caveat of the current study is the use of an infection 
system, owing to technical limitations with experimental colitis 
models, with which to identify putative Eomes gene targets in intes-
tinal CD8+ TRM cells. Nonetheless, it appears that up-regulation of 
Eomes in CD8+ TRM cells, through its actions on a diverse set of 
gene targets, may promote the acquisition of an inflammatory and 
pathogenic TRM cell transcriptional program.

Overall, our work has resulted in an integrated single-cell tran-
scriptomic and antigen receptor sequencing dataset that expands 
the single-cell data available in human IBD. The study identifies 
alterations in immune cell types and clonal relationships that occur 
in the context of disease, including plasma cells, Treg cells,  T cells, 
and CD8+ TRM cells, and will enable other investigators to identify 
additional UC-associated changes in a cell type– and tissue-specific 
manner for further study. This is likely to accelerate mechanistic 
and functional investigations into the role of specific genes in relevant 
immune cell types and states in UC.

MATERIALS AND METHODS
Study design
The purpose of this study was to gain a broader understanding of 
the heterogeneity and clonal relationships of adaptive immune cells 
in the context of human UC. To this end, we generated and analyzed 
scRNA and antigen receptor sequencing data generated from human 
peripheral blood and gastrointestinal mucosal tissue samples.

Human participants
The Human Research Protection Programs at the University of 
California, San Diego (UCSD) and the VA San Diego Healthcare 
System approved the study. Intestinal biopsies and peripheral blood 
were obtained from patients undergoing colonoscopy at the UCSD 
and the VA San Diego Healthcare System after obtaining informed 
consent. Healthy individuals were undergoing colonoscopy as part 
of routine clinical care for colorectal cancer screening/surveillance 
or noninflammatory gastrointestinal symptoms that included con-
stipation or rectal bleeding. Inclusion criteria included age over 
18 years old and absence of significant comorbidities or colorectal 
cancer. UC patients with active endoscopic disease were selected. 
Details of the study participants are provided in table S2.

Human peripheral blood mononuclear cell isolation
Blood was collected in a BD Vacutainer CPT tube and centrifuged 
at 400g for 25 min. The buffy coat layer was removed, washed, and 
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counted. Cells were resuspended in freezing buffer {10% (v/v) 
dimethyl sulfoxide (DMSO; Sigma-Aldrich), 40% (v/v) complete 
RPMI [RPMI (Corning) + 10% (v/v) fetal bovine serum (FBS; Life 
Technologies) + penicillin (100 U/ml)/streptomycin (100 g/ml) 
(Life Technologies)], and 50% (v/v) FBS}, placed into a freezing 
container (Mr. Frosty), and stored at −80°C. Cells were recovered, 
washed, filtered, and used for mass cytometry [cytometry by time of 
flight (CyTOF, Fluidigm)] as described below or labeled with anti-
human CD45 (2D1) (BioLegend) for sorting. CD45+ immune cells 
were sorted on a FACSAria II (BD Biosciences) using gating strategy 
shown in fig. S1A.

Human intestinal cell isolation
Intestinal biopsies were obtained with endoscopic biopsy forceps 
from the rectum and collected in a conical tube with Hanks’ balanced 
salt solution (HBSS; Corning). Intestinal biopsies were transferred 
into freezing buffer [10% (v/v) DMSO, 40% (v/v) complete RPMI, 
and 50% (v/v) FBS] and stored at −80°C. Biopsies were recovered, 
incubated in HBSS on a shaker, then incubated twice in HBSS and 
5 mM dithiothreitol (Thermo Fisher Scientific) with shaking, and 
then washed in HBSS. Intestinal biopsies were mechanically disso-
ciated, then placed into 10 ml of digestion mixture [complete RPMI, 
collagenase type VIII (1.5 mg/ml) (Sigma-Aldrich), and deoxyribo-
nuclease I (50 g/ml) (Roche)] on a rocker at 37°C for 20 min, 
filtered, and stained with anti-human CD45. CD45+ immune cells 
were sorted on a FACSAria II using the gating strategy shown in 
fig. S1A.

10x Genomics library preparation and sequencing
Cells were washed and resuspended in phosphate-buffered saline and 
0.04% (w/v) bovine serum albumin per the manufacturer’s guidelines. 
Single-cell libraries were prepared according to the protocol for 10x 
Genomics for Single Cell V(D)J and 5′ Gene Expression. About 
20,000 sorted CD45+ cells were loaded and partitioned into Gel Bead 
In-Emulsions. scRNA libraries were sequenced on a HiSeq 4000 
(Illumina). The BCR and TCR libraries were amplified according 
to the manufacturer’s protocol and sequenced on a NovaSeq S4 
(Illumina).

Mice
All mice were housed under specific pathogen–free conditions in an 
American Association of Laboratory Animal Care–approved facility 
at UCSD, and all procedures were approved by the UCSD Institu-
tional Animal Care and Use Committee. C57BLJ/6 CD45.1, CD45.2, 
CD45.1.2, P14 TCR transgenic (CD45.1 or CD45.1.2, both maintained 
on a C57BL6/J background), RAG1-deficient, and IL-10–deficient mice 
were bred at UCSD or purchased from the Jackson Laboratories. Mice 
with a loxP-flanked Zeb2 allele (35, 65) were bred with Rosa26Cre-
ERT2 (ERCre) mice (66) and were maintained on a C57BL/J6 back-
ground. Rosa26Cre-ERT2–mediated deletion of the floxed Zeb2 gene 
was induced by oral gavage of 1 mg of tamoxifen (Cayman Chemical 
Company) emulsified in 100 l of sunflower seed oil (Sigma-Aldrich) 
for five consecutive days and then rested for 5 days. Cells for Treg cell 
suppression assays were obtained from male mice that were 12 to 
28 weeks old.

SUPPLEMENTARY MATERIALS
immunology.sciencemag.org/cgi/content/full/5/50/eabb4432/DC1
Materials and Methods

Fig. S1. Overview of experimental design, quality control metrics of single-cell sequencing 
data, and assessment of overall antigen receptor diversity in healthy individuals and patients 
with UC.
Fig. S2. scRNA-seq reveals heterogeneous B lymphocyte clusters.
Fig. S3. Analyses of clonal relationships in health and UC.
Fig. S4. scRNA-seq reveals heterogeneous T lymphocyte clusters.
Fig. S5. Analysis of Zeb2 knockdown or Zeb2-deficient Treg cells.
Fig. S6. Mass cytometry analysis of peripheral blood.
Fig. S7. CD8+ T cell analysis and histopathology in mouse models of intestinal inflammation.
Table S1. Raw data file.
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Table S3. Quality control metrics for single-cell sequencing data.
Table S4. Differential gene expression analyses of plasma cell clusters.
Table S5. Differential gene expression analyses between  T cell clusters T8, T13, and T16.
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