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Abstract
We propose a framework for modeling sequence motifs based on the Maximum Entropy
principle (MEP). We recommend approximating short sequence motif distributions
with the Maximum Entropy Distribution (MED) consistent with low-order marginal
constraints estimated from available data, which may include dependencies between
non-adjacent as well as adjacent positions. Many Maximum Entropy models (MEMs)
are specified by simply changing the set of constraints, and are utilized to discriminate
between signals and decoys. Classification performance using different MEMs gives
insight into the relative importance of dependencies between different positions. We
apply our framework to large datasets of RN A splicing signals. Our best models out-
perform previous probabilistic models in the discrimination of human 5’ (donor) and 3’
(acceptor) splice sites from decoys. Finally, we discuss mechanistically-motivated ways

of comparing models.
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1 Introduction

Given a set of aligned sequences representing instances of a particular sequence motif, what model
should be used to distinguish additional motif occurrences from similar sequences? This problem
occurs commonly in computational biology with examples of DNA, RNA and protein sequence mo-
tifs. For example, it is important identify signal peptides in protein sequences and to to recognize
true sites of RNA splicing from ’decoy’ splice sites in primary transcript sequences. A number of
statistical models have been developed to approximate distributions over sets of aligned sequences.

For example, Markov Models (MMs) and Hidden Markov Models (HMMs) are commonly used in
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bioinformatics[12], with applications in gene-finding and protein domain modeling [18].

We propose that the most unbiased approximation for modeling short sequence motifs is the Maxi-
mum Entropy Distribution (MED) consistent with a set of constraints estimated from available data.
This approach has the attractive property that it assumes nothing more about the distribution than
that it is consistent with features of the empirical distribution which can be reliably estimated from
known signal sequences. In this paper we consider low-order marginal distributions as constraints,
but other types of constraints can also be accomodated. Such models have been exploited in natural
language processing [3], amino acid sequence analysis [5] and as a weighting scheme for database
searches with profiles [19].

We introduce our approach in Section 2.1, define “constraints” in Section 2.2, and define Maximum
Entropy models (MEM) in Section 2.3. In Section 2.4, we describe the use of Brown’s iterative scal-
ing [4] procedure of iterative scaling to obtain the MED consistent with a given set of constraints.
In Section 2.5, we introduce a greedy-search information maximization strategy to rank constraints.
This approach is applied to splice site recognition[7], an important problem in genetics and biochem-
istry, for which an abundance of high quality data are available. We focus on effectively modeling
the 9 base sequence motif at the 5’ splice site (5’ss), and the ~23 base sequence motif at the 3’ splice
site (3’ss) of human introns, and not on the general problem of gene prediction. However, better
modeling of the splice signals should lead to improved gene prediction and can be used to predict
the splicing phenotypes of mutations that alter or create splice sites. The constraints for a MEM
can also be ranked in importance. Finally, we propose a straightforward mechanistically-motivated

way of comparing splice site models in terms of local optimality.

2 Methods

2.1 Maximum Entropy Method

Let X be a sequence of A random variables X = {X1, Xo, ..., X} which take values from the alpha-
bet {A,C,G,T}. Let lower-case © = {1, 2,...xx} represent a specific DNA sequence. Let p(X)
be the joint probability distribution p(X; = x1, Xo = 9, ..., Xx = z)), and upper case P(X = x)
denote the probability of a state in this distribution (i.e. there are 4* possible states).

The principle of maximum entropy was first proposed by Jaynes [16] and states that of all the pos-
sible distributions in the hypothesis space that satisfy a set of constraints (component distributions,
expected values or bounds on these values), the distribution that is the best approximation of the
true distribution given what is known (and assuming nothing more) is the one with the largest

Shannon entropy, H, given by the expression



H(p) == b(x)logs(p(x)) (1)
where the sum is taken over all possible sequences, . We will use logarithms to base 2, so that the
entropy is measured in bits. Shannon entropy is a measure of the average uncertainty in the random
variable X, i.e. the average number of bits needed to describe the outcome of the random variable.
The set of constraints should therefore be chosen carefully and must represent statistics about the
distribution that can be reliably estimated. It is possible to specify a set of constraints which are
“Inconsistent” in that they cannot be simultaneously satisfied (e.g. {P(A,A) = 3/4,P(T\T) =
1/2}). However, all constraint sets used here will be subsets of the marginal frequencies of the
“empirical distribution” on sequences of length A\, and will therefore be consistent. The uniqueness
of the MED for a consistent set of constraints was proved by Ireland and Kullback [15].

The principle of minimum cross-entropy or minimum relative entropy (MRE), first introduced by
Kullback, is a generalization of the MEP that applies in cases when a background distribution ¢ is
known in addition to the set of constraints. Of the distributions that satisfy the constraints, the
MRE distribution is the one with the lowest relative entropy (or KL-divergence), D, relative to this
background distribution: @

. . p\r

Dir(p) = Zp(x)logm (2)
Minimizing Dk (p) is equivalent to maximizing H(p) when the prior ¢ is a uniform distribution
on the sequences of length A. Shore and Johnson (1980) proved that maximizing any function but
entropy will lead to inconsistencies unless that function and entropy have identical maxima [26].
This implies that if we believe that the constraints are correct and well estimated (and no other

information is assumed), then the MED is the best approximation of the true distribution.

2.2 Marginal Constraints

For convenience, we consider two categories of constraints: “complete” constraints, which specify
sets of position dependencies and “specific” constraints, which are constraints on (oligo-)nucleotide

frequencies at a subset of positions.

2.2.1 “Complete” Constraints

Omitting the hats over the variables for convenience, let Sx be the set of all lower-order marginal
distributions of the full distribution, p(X = {X1, X2, ..., X»}). A lower-order marginal distribution

is a joint distribution over a proper subset of X. For example, for A = 3,

Sx = {p(X1),p(X2),p(X3), p(X1, X2),p(X2, X3),p(X1, X3)} (3)



Define S7* C Sx, where superscript m refers to the marginal-order of the marginal distributions
and the subscript s refers to the skips of the marginal distribution. In Equation 3, the first three
elements are 1st-order marginals (i.e. m = 1), and the last three elements are 2nd-order marginals
(ie. m = 2): p(X1,X2) and p(Xa, X3) are the 2nd-order marginals with skip 0 (s = 0), and
p(X1, X3) is the 2nd-order marginal with skip 1 (s = 1). They are illustrated in our notation below:

So = {p(X1),p(X2),p(X3)}
S5 = {50, p(X1, X2), (X2, X3)}
St = {8, p(X1, X3)}
Sx = 551 = {55, p(X1, X2)p(X2, X3), p(X1, X3)}

For convenience, we include S§ in S™ whenever the marginal order, m > 1. For an aligned
set of sequences of length ), the 1st-order constraints (S3) are the empirical frequencies of each
nucleotide (A,C,G,T) at each position, and the Maximum Entropy Distribution consistent with
these constraints is the Weight Matrix Model (WMM), i.e. all positions independent of each other
[7]. On the other hand, if 2nd-order nearest-neighbor constraints (i.e. S2) are used, the solution is
a Inhomogeneous 1st-order Markov model (I1MM) (Appendix A). Consequently, different sets of
constraints specify many different models. The performance of a model tells us about the importance

of the set of constraints that was used.

2.2.2 “Specific” Constraints

“Specific” constraints are observed frequency values for a particular member of a set of “complete”
constraints. Continuing with the example above, the list of 16 “specific” constraints for p(X1, X3)
are: {A-AA-C,A-G,A-T,..,T-AT-C,T-G,T-T}, where A- A is the observed frequency of
occurrence of the pattern ANA (N = A,C,G or T).

2.3 Maximum Entropy Models

A Maximum Entropy Model (MEM) is specified with a set of complete constraints, and consists of
two distributions, namely, the signal model (p™ (X)) and the decoy probability distribution (p~ (X)),
both of which are the MEDs generated by iterative-scaling (Section 2.4) over constraints from a set
of aligned signals and a set of aligned decoys of the same sequence length, A, respectively. Given a
new sequence, the MEM can be used to distinguish true signals from decoys based on the likelihood
ratio, L,

(4)



where PT(X = z) and P~ (X = x) are the probability of occurrence of sequence = from the distri-
butions of signals(+) and decoys(-), respectively. Following the Neyman-Pearson lemma, sequences
for which L(X = x) > C, where C'is a threshold that achieves the desired true-positive rate a, are

predicted to be true signals.

2.4 TIterative Scaling to Calculate MED

In simple cases, the MED consistent with a set of constraints can be determined analytically using
the method of Lagrange multipliers, but analytical solutions are not practical in most real world
examples. Instead, the technique of iterative scaling is used. This technique was introduced by
Lewis [21] and Brown [4], who showed that the procedure described below converges to the MED
consistent with the given lower order marginal distributions. There is no limitation on the number
or type of component distributions that can be employed [4]. Brown showed that at each step of the
iteration, the approximation to the MED improves, using Equation( 2) as a measure of closeness of
the approximating distribution to the true distribution, but the proof of convergence is not rigorous
(see [15] for a rigorous proof of convergence).

The iteration procedure begins with a uniform distribution with terms P°(X) = 4=, so all sequences
of length A are equally likely. Next, we specify a set of complete constraints and a corresponding
list of specific constraints. Represent each member of the ordered list of specific constraints as @Q;,
where 7 is the order in the list. The next step is to sequentially impose the specific constraints, @;,
that the approximating distribution must satisfy. The terms relevant to the constraint at the j*
step of iteration have the form:

Pl = Pj_1% (5)

where P7~1 is a term at the (j — 1)th step in the iteration while P’ is the corresponding term at
the jth step, @; is the ith constraint in the list of “specific constraints” and Qf ~1 is the value of
the marginal corresponding to the ith constraint determined from the distribution p at the j — 1th

step. To illustrate, we return to our example in Equation 3 and apply constraint Q); = A - A at the

jth step:
PI(X = ANA) =PI~} (X = ANA)% (6)
where l
Q= Y PHX=ANA) (7)

Ne{A,C,G,T}

All terms not included in this sum (i.e. triplets not matching AN A) are iterated as follows:

PI(X =VNW) =P }X = VNW)% (8)

Jj—1
7

for VNW such that V£ Aor W #£ A, N € {A,C,G,T}.



Note that enforcing satisfaction of a constraint at step j may cause a previous constraint to be
unsatisfied until the previous constraint is applied again. This process is iterated until convergence

or until a sufficiently accurate approximation is obtained.

2.5 Ranking Position Dependencies

As the iterations proceed, the entropy, H (Equation 1) of successive distributions p(X) decreases
from the maximum value loga(4*) to that of the MED. This makes intuitive sense- as more con-
straints are applied, the distribution contains more information, hence lower entropy. For our pur-
poses, we say the entropy has converged when the difference in entropy between iterations becomes
very small (e.g. | AH |< 1077). A KL-divergence criterion gives similar results. We have found
that convergence typically requires about 10-20 complete iterations of the constraints for a cutoff of
| AH |< 1077,

Applying different constraints reduces the entropy of the distribution by different amounts. There-
fore, we can control the rate of convergence by changing the order in which the constraints are
applied. We perform a greedy search to rank constraints by the amount that they reduce the en-

tropy of the solution as described below.

Greedy-search Entropy-reduction Strategy

A first list (“bag of constraints”) is initialized to contain all specific constraints. A second list, the

“ranked list”, is initially empty. At each iteration:
1. Initialize a uniform distribution.
2. Determine the MED consistent with all constraints from the “ranked list”.

3. Apply the first constraint from the “bag of constraints”. Determine the reduction in H relative
to the distribution determined in step 2, AH;. Repeat all the constraints separately, recording

AH; for each constraint.
4. Place the constraint with the largest AH; in the “ranked list”.

5. Repeat steps 1 to 4 until all constraints in the “bag of constraints” have been placed in the

“ranked list”.

It is important to emphasize that the ranking of a constraint depends on the constraints ranked
before, so that this algorithm is not guaranteed to determine the optimal subset of k£ constraints for

2 <k < N —1, where N is the total number of constraints. Another possible criterion for ranking



(instead of AH;) is AKL; defined as the reduction in relative entropy (Equation 2). Constraints

can also be ranked in larger groups, instead of one at a time, thus speeding up the process.

3 Splice Site Recognition

The success of gene finding algorithms such as Genscan [8], HMMgene [17] and Genie [20] is critically
dependent on finding the signals that mark exon-intron boundaries, which are recognized in cells by
the nuclear pre-mRNA splicing machinery. The two strongest contributing signals are the donor or
5 splice site (5’ss) and the acceptor or 3’ splice site (3’ss), which demarcate the beginning and end
of each intron, respectively.

In [28], a number of algorithms that predict human splice sites were compared, indicating, as might
be expected, that algorithms which use global and/or local coding information and splice signals
(HMMgene and NetGene2) perform better than algorithms that only use the splice signals them-
selves (NNSPLICE, SpliceView and GenelD-3). Here, we focus on modeling the discrete splicing
signals of specific length, with the understanding that once these have been optimally modeled, they
could be incorporated into more complex exon or gene models if desired.

A number of models have been developed that can be estimated from reasonably sized sets of
sequences|7]. Weight Matrix models (WMMs) assume independence between positions. Although
this assumption is frequently violated in molecular sequence motifs [6], WMMs are widely used be-
cause of their simplicity and the small number of sequences required for parameter estimation (Splice-
View and GenelD-3 score splice sites based on Weight Matrix models [25]). Inhomogeneous first-
order Markov models (I1MMs) account for nearest-neighbor dependencies which are often present
in sequences and usually can discriminate sites more accurately than WMMs. However, IIMMs ig-
nore dependencies between non-adjacent positions, which may also be present. Higher-order Markov
models account for more distant neighboring dependencies, but the number of parameters that have
to be estimated and hence the required number of training samples increases exponentially with
Markov order.

Decision tree approaches, such as the Maximal Dependence Decomposition (MDD) [7] used in Gen-
scan and GeneSplicer [24] reduce the parameter estimation problem by partitioning the space of
signals such that each leaf of the tree contains a sufficiently-sized subset of the sites and the strongest
dependencies between positions are modeled at the earliest branching points when the most data are
available. Cai and colleagues applied probabilistic tree networks and found that simple first-order
Markov models are surprisingly effective for modeling splice sites[10]. Arita and colleagues utilize
the Bahadur expansion to approximate training of Boltzmann machines to model all pair-wise cor-
relations in splice sites and found no improvement compared to first-order Markov models for 5’ss,

but better performance for the 3’ss [1]. Our work is related to the latter two approaches in that



we introduce a general family of models in which Markov models appear as natural members. It
is worth noting that in addition to (non-)adjacent pairwise dependencies, MEMs can accommodate

third-order or higher-order dependencies.

3.1 Construction of Transcript Data

To avoid using computationally predicted genes, available human cDNAs were systematically aligned
to their respective genomic loci by using a gene annotation script called GENOA (L.P. Lim and
C.B.B. unpublished). To simplify the analysis, genes identified by this script as alternatively spliced
were excluded. We used a total of 1821 non-redundant transcripts that could be unambiguously
aligned across the entire coding region, spanning a total of 12,715 introns (hence 12,715 5’ss and
12,715 3’ss). Our training and test data sets comprise disjoint subsets of these data. We use
sequences at positions {-3 to +6} of the 5’ss (i.e. last 3 bases of the exon and the first 6 bases
of succeeding intron), which have the GT consensus at positions {+1,+2}, and the sequences at
positions {-20 to +3} of the 3’ss with the AG consensus at positions {-2,-1} (see Table 1). These
splice sites are recognized by the major class or U2-type spliceosome that is universal in eukaryotes.
We excluded 5’ss that have the GC consensus and 5’ss or 3’ss that matched the consensus patterns
for splicing by the minor class or U12-type spliceosome. Decoy splice sites are sequences in the exons
and introns of these genes that match a minimal consensus but are not true splice sites e.g. decoy
5’ splices sites are non-splice sites matching the pattern N3sGT N4 and decoy 3’ss are non-splice sites

that match the pattern Nig AGN3 [9].

4 Results and Discussion

4.1 Models of the 5’ splice site

The various models tested are listed in Table 2. The text abbreviations are in the first column,
where ”"me” stands for maximum entropy, ”s” stands for skip and ”x” stands for the maximum
skip; the first number is the marginal order and the second is the skip number or maximum skip
number. Figure 1 and Table 2 together illustrate the improvement in performance resulting from
use of more complex constraints. From the ROC analysis ( Figure 1 and Appendix C), it is clear
that me2s0 (equivalent to a IIMM), does much better than the mels0 (equivalent to a WMM),
as has been observed previously [7], indicating that nearest-neighbor contributions are important
in human 5’ss. Our best model according to ROC analysis and maximum correlation coefficient
analysis (Appendix B) for the 5’ site is the me2x5 model, which takes into account all pair-wise

dependencies. The MDD model used in Genscan [8] performs slightly better than the me2s0/I11MM

model. Analysis using maximum ’approximate correlation’ (see Appendix B) rather than maximum

Table 1 here



correlation coefficient gave similar results.

We observe that the me2x5 model shows significant improvement over the mels0/WMM model: the
false positive rate at 90% sensitivity was reduced by approximately a factor of 2. The correlation co-
efficients are not large, which likely reflects properties of the human pre-mRNA splicing mechanism,
in which 5’ss recognition relies heavily on other signals, such as enhancers and silencers, distinct

from the splice signal itself [14] [2].

4.1.1 Ranked Constraints

The top 20 2nd-order constraints determined for models me2s0 and me2x5 using the greedy-search
algorithm are listed in Tables 3 and 4. Figure 2A illustrates the faster increase in information
content of the model when the constraints were applied in ranked order (Table 3), versus a random
ordering of constraints. Furthermore, higher performance is achieved with ranked constraints versus
a similar number of randomly ordered constraints (Figure 2B). Of course, when all the constraints
are used, there is no difference in performance. Clearly, certain pairs of positions contain more
information useful for discrimination. Also, the information content of the distribution is related to
the performance of the model, i.e. the performance increases with increasing information content of
the model. It is useful that the rankings of the dependencies are not just on the level of positions, but
also at the level of (oligo)nucleotide sequence, a feature not seen in [10]. Some of these effects could

reflect preferences of trans-acting factors which may bind cooperatively to different 5’ss positions.

4.2 Models of the 3’ splice site

The 3’ss sequence motifs is much longer than the 5’ss, ~23 bases. For notational simplicity, we
define the index of each position in the sequence starting from 1 to 21, excluding the invariant AG
dinucleotide. To avoid the impractical task of storing and iterating over 42! ~ 4 x 102 possible
sequences, we may first break up the sequences into 3 consecutive non-overlapping fragments of
length 7 each (fragments 1 to 3: positions 1 to 7, 8 to 14 and 15 to 21 respectively), build individual
MEDs for the 3 fragment subsets (see Equation 9), and score new sequences by a product of their

likelihood ratios (Equation 4).

P'(X) = P(X1, ..., X7)P(Xs, ..., X12)P(X15, ..., X21) (9)

However, using Equation 9 ignores dependencies between segments. The resulting loss in perfor-
mance is illustrated in Figure 3 (compare me2s0 and mml curves). Again, the mels0 is equivalent
to a WMM. To retain the dependencies of the nucleotides between the segments while avoiding
computer memory issues, we propose the following approach. Six other fragments are modeled

(fragments 4 and 5: positions 5 to 11 and 12 to 18 respectively; fragments 6 to 9: positions 5 to 7,

Figure 1 here
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8 to 11, 12 to 14, 15 to 18 respectively). We then multiply the likelihood ratios for fragments 1 to
5 and divided by the likelihood ratios of fragments 6 to 9. For dependencies within 7 bases, this

approach “covers” all the positions.

P(X)P"(X)
P(X57 .’Xll)P(X127 '7X18)

Poverlap (X) - (10)

where
P"(X) = P(X5, X6, X7)P(Xs, Xo, X10, X11)P(X12, X13, X14) P(X15, X16, X17, X18)

The performance of this “overlapping” Maximum Entropy model is illustrated in Figure 3 (labeled
modified me2s0), and performs similarly to the corresponding Markov model. Models me3s0 and
me4s0 were modified analogously. Previous researchers have found that nearest-neighbor dependen-
cies were sufficient to specify good models for 3’ss sites ([7],[10]). In fact, we found that a 2nd-order
Markov model of the 3’ss site performs better than a 1st-order Markov model, but that a 3rd-order
model performs worse than a 1st-order Markov model, presumably because of parameter estimation
and/or sample size issues for 3rd-order transition probabilities of the form P(L|IK.J) where I,.J
and/or K are purines (low frequency in most 3’ss positions). This observation motivates our proce-
dure for segmenting the signal into 9 fragments, which use only 2nd-order constraints and neglects
some long-range dependencies (such as between positions 1 and 21). It is possible to segment the
signal in a way that captures such long-range dependencies (not shown). However we found that
adding dependencies beyond 2-nucleotide separations does not significantly change the performance

(Table 5 and Figure 4).

4.3 Clustering Splice Site Sequences

The MDD model [7] [8] demonstrated that appropriate subdivision of the data can lead to improved
discrimination. Here, we ask whether MEMs can be improved by first clustering the data into subsets.
First, we generated a symmetric dissimilarity matrix D, where d;; is the number of mismatches
between splice site sequences ¢ and j in the list of training set sequences. Next, we implemented
hierarchical clustering on D using Ward’s method. Results for our set of 5’ss are shown in Figure 5
and Figure 6.

Interestingly, we observe that the highest contributors to the information content (excluding the GT
consensus) in cluster 1 come from the 3rd, 4th, 5th and 6th bases in the intron, whereas the last
two bases in the exon contribute the most in cluster 2, indicating that clusters 1 and 2 represent
“right-handed” and “left-handed” versions of the 5’ss motif respectively. These two classes of 5’ss
might be recognized by different sets of trans-factors e.g. U6 snRNP would generally interact more

strongly with “right-handed” 5’ss, while U5 snRNP should interact preferentially with “left-handed”
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5’ss [9]. We can combine separately trained models in the following manner:
Pcombined(X) - P(X|M1)P(Ml) + P(X|M2)P(M2) (11)

where P.ombined(X) is the probability of generating sequence X under the combined model, P(X|M;)
and P(X|Ms;) are the conditional probabilities of generating X given the model constructed using
cluster 1 and cluster 2 sequences, respectively, and P(M;) and P(Ms) are the prior probabilities
of cluster 1 and 2, respectively. The performance of combined 5’ss models are illustrated in Fig-
ure 7. Separating the sequences into the 2 clusters and modeling them separately with WMMs and
then combining the models performs significantly better than using a WMM derived from all the
sequences. However, modeling the separate clusters with me2x5 and I1MM models does not show
significant improvements compared to modeling the entire cluster. Apparently, the more complicated
models are able to capture cluster-specific information using the entire set of sequences. Figure 8
shows the motifs for 3’ss clusters which appear to separate into T-rich versus C/T-rich pyrimidine

tracts. Combined 3’ss models showed a similar effect as with the 5’ss models (data not shown).

5 Applications of Splice Site Models

The specificity of pre-mRNA splicing hinges on highly conserved base pairing between the 5’ splice
site (5’ss) and U1/U6 small nuclear RNAs as well as interactions with U1C protein [11] and U5
snRNA [23]. Tt is unclear whether decoy splice sites are recognized by the splicing machinery. A
study showing that intronic 5’ decoy sites are activated when cells are heat shocked demonstrates that
intronic decoys may be functional under special conditions [22]. Therefore, decoys could potentially
be real splice sites, but may be blocked by the presence of RNA secondary structures [29], or have
suboptimal location relative to splicing enhancers and repressors [14] [13]. Nevertheless, a good
computational model should generally assign higher scores (i.e. log-likelihood ratios) to real 5’ss

and lower scores to decoys, when all other factors are equal.

5.1 Proximal 5’ss decoys in introns

We have used several measures to compare the performance of different models, all of which involve
comparing the sensitivity of the models for a given false positive rate (Appendices B and C). This
essentially sets a global threshold, C (see Section 2.3) in deciding whether a sequence is or is not
a true splice site. However, the splice site recognition machinery does not appear to use a global
setting- in some cases weak splice sites are used when positioned in close proximity to splicing
enhancers. This suggests a local decision rule for splice site detection, i.e. the most important factor
may be whether the true splice site has higher score than decoys in its proximity.

We compared models by scoring possible 5’ss in a dataset of ~ 12,600 human introns. Better models
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should result in a larger number of introns with no higher-scoring decoys downstream of the real 5’ss.
Figure 9 shows that our best 5’ss model, me2x5, results in the greatest number of introns which have
no higher-scoring decoys downstream of the real 5’ss, i.e. 69 introns more than the MDD model,
and 639 more than the WMM. Moreover, the me2x5 model gives the lowest number of introns that
have a first higher-scoring decoy (fhsd) in the intron within 250 bases from the upstream real 5’ss -
me2x5 predicted 75 fewer such introns than MDD, and 686 fewer introns than the WMM. The three
models result in approximately the same number of introns where the fthsd occurred further than
250 bases from the real 5’ss. On inspection of the length distribution of these introns, we observed
that the median length for these introns were ~ 2, 770 — 2,900 bases, whereas the rest of the introns
had a median length of ~ 650 — 750 bases, suggesting that global optimality of splice site motifs is

less important in long introns.

5.2 Ranking and Competing 5’ss

The top 20 highest-scoring 5’ss sequences ranked by the me2x5 model are listed in Table 6, with
their corresponding ranks by the MDD, 1IMM and WMM models and, in the last column, the “odds
ratio” defined as the frequency of occurrence of the sequence as a splice site divided by its occurrence
as a decoy. Different models result in significatly different rankings of the signals. Figure 10 shows
that the top scoring sequences are well correlated between models, but the lower scoring sequences

vary much more.

5.3 Predicing Splicing Mutations in the ATM gene

Ataxia-telangiectasia (A-T) is an autosomal recessive neurological disorder caused by mutations in
the ATM gene. Recently, our Maximum Entropy 5’ss and 3’ss models have been utilized to predict
the consequences of genomic mutations in the ATM gene that perturb splicing with promising results

(30

6 Conclusions

We recommend using the Maximum Entropy Distribution as the least biased approximation for
the distribution of short sequence motifs consistent with reliably estimated constraints. We show
that this approach grants us the flexibility of generating many different models simply by utilizing
different sets of constraints. Our greedy-search strategy ranks constraints at the resolution of paired
nucleotides at specific positions. This can be useful for determining correlations with binding factors.
We demonstrate on a simple example that using the constraints in order of their ranking increases

the rate of convergence to the MED, increases the information content of the distribution and
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improves performance much faster than using randomly ordered constraints. The ranking of these
constraints may reflect biological dependencies between nucleotides at different positions in the motif.
Our best models using simply dinucleotide marginal distributions outperform previous models, e.g.
WMMs and IMMSs. These models themselves are MEDs when position-specific frequencies or nearest-
neighbor dinucleotide frequencies are used as constraints. MEMs are relatively easy to use, e.g.
the 5’ss model is stored as a 16,384-long vector in lexicographic order. We have developed a 3’ss
“overlapping” Maximum Entropy model using an approach which combines multiple sub-models
that performs better than models utilizing only nearest-neighbor dependencies. We show that the
MED takes into account possible sub-clustering information in the data. We use a straightforward
biologically-motivated way to compare models in terms of local optimality. Importantly, the MED
framework described can be applied to other problems in molecular biology where large datasets are

available, including classification and prediction of DNA, RNA and protein sequence motifs.
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8 Appendix

A Inhomogeneous Markov Models

A kth-order Inhomogeneous Markov Model can be generated as follows:

A
pkj\4M(X):p(X1,...7Xk) H p(XilXiflw..,Xi_k). (12)
i=k+1

where X = {X1, X2,...X2}, k is the order and p(X;|X;—1,..., Xs—x) is the conditional probability of gener-
ating a nucleotide at position ¢ given the previous k nucleotides. As before, conditional probabilities and
marginals are estimated from the corresponding frequencies of occurrences of nucleotide combinations at the
specified positions.

It is important to note that the maximum entropy distributions using nearest-neighbor constraints of
marginal-order (k 4+ 1) are equivalent to kth-order Markov Models. In every case, the performance of
the MED for constraints S§ was equivalent to that of a (k — 1)th order Markov model. Thus the class of

Markov models is a subset of the class of solutions specified by MEM.
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B Performance Measures

Table 7 illustrates a confusion matrix, which contains information about how well a model performs given an
independent test set with real splice sites (positives) and decoys (negatives). N is the total number of test
sequences, i.e. N =TP+ FP+ FN +TN. Standard Measures of accuracy such as Correlation Coefficient
(CC), Approximate Correlation (AC), Sensitivity (Sn) and False Positive Rate (FPR) are defined below:

(TP x TN) — (FN x FP)

CcC =
(TP + FN)(TN + FP)(TP + FP)(TN + FN))2
1, TP TP TN TN
AC_§(TP+FN+TP+FP+TN+FP+TN+FN)_1

TP

S = TP T FN

FP

FPR=_—-—

R TN + FP

C ROC analysis

Receiver Operating Curve (ROC) Analysis [27] is an effective way of assessing the performance of models
when used in a binary hypothesis test. In our case, a sequence x is predicted as a splice site if the likelihood
ratio, L, is greater than a threshold, C' (Equation 4). A ROC curve is a graphical representation of Sn (on
the y-axis) versus false positive rate (FPR) (on the x-axis) as a function of C, and has the following useful
properties:

1. It shows the tradeoff between sensitivity and false positive rate (increases in sensitivity are generally

accompanied by an increase in false positives).

2. The closer the curve follows the left-hand border and then the top border of the ROC plot, the more

accurate the model. The area under the curve is a measure of test accuracy.
3. The closer the curve comes to the 45-degree diagonal of the ROC space, the less accurate the model.

Analogous to the ROC analysis, we can plot the other standard measures as described above against changing
values of the threshold, C. The maximum point on the curves will indicate the best setting for C' and gives
a performance measure which can be used to compare models. Hence we can define C'Ciaz to be the
maximum correlation coefficient i.e. the highest point on the curve, and Ccg,,,, is the threshold where

CCpmaz is obtained. ACp,qx and Cagc,,,, can be defined similarly.

14
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Receiver Operating Curve Analysis
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Figure 1: 5’ss: ROC curves for me2x5, me2s0, me2sl, mels0 and MDD. The curves for the other

models are not plotted, but can be inferred from Table 2.
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Figure 2: (A): Information content (I=18-H) of me2s0 model as constraints are added. If the con-
straints are ranked, the information content increases at a higher rate than if randomly ranked
constraints are used. The x-axis corresponds to the model using the top N constraints. (B): Maxi-
mum Correlation Coefficient as a function of constraints. Ranked constraints added sequentially led

to better performance with fewer constraints, compared to a random ordering of constraints. The

model is me2s0 (excluding 1st order marginals).
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Receiver Operating Curve Analysis
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Figure 3: 3’ss: ROC curves for me2s0,me2s0 modified, mels0, Omm (0IMM) and lmm (1IMM)
models of the 3’ss. The curve labeled me2s0 was constructed by segmenting the 21 base long
sequence set into 3 consecutive non-overlapping fragments of length 7 each. The curve labeled me2s0

(modified) was constructed as described in the text, and is equivalent to the 1st-order Markov model

(TIMM).
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Receiver Operating Curve Analysis
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Figure 4: 3’ss: ROC curves for modified me2x5, me2x4, me2x3, me2x2, me2x1, meds0, me3s0, me2s0

and melsO models of the 3’ss.
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Figure 5: Truncated Dendrogram for 5’ss sequences (hierarchical clustering using ward’s method).
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The two major clusters contain 7,260 and 5,367 sequences, respectively.
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Figure 6: Sequence motifs for 5’ss cluster 1 (left) and 2 (right) created with the Pictogram program:
http://genes.mit.edu/pictogram.html. The height of each letter is proportional to the frequency of
the corresponding base at the given position, and bases are listed in descending order of frequency
from top to bottom. The information content (relative entropy) for each position relative to a

uniform background distribution is also shown.
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Receiver Operating Curve Analysis
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Figure 7: 5’ss: ROC curves for me2x5, 1IMM, WMM and me2x5 (combined), 1IMM (combined)
and WMM (combined).
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Figure 8: Sequence motifs for 3’ss cluster 1 (top) and 2 (bottom)
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Figure 9: Bar Chart showing the number of introns that have no higher scoring decoy (hsd) than the
real upstream 5’ss, and the number of introns that have a first higher scoring decoy (Fhsd) within

250 bases from the real 5’ss or greater than 250 bases from the real 5’ss.
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Figure 10: Scores of 5’ss sequences by different models plotted against each other. Model names are

labeled in the x and y-axes.
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Real 5’ss  Decoy 5’ss  Real 3’ss  Decoy 3’ss
Train 8,415 179,438 8,465 180,957
Test 4,208 89,717 4,233 90,494
Total 12,623 269,155 12,698 271,451

Table 1: Number of sequences in 5’ss and 3’ss training and test sets.
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Models Constraints CC
me2x5 5’1272,37475 0.6589
me2x4 Sf’27374 0.6552

me2x3 5%273 0.6533
mebs0 S 0.6527
me2x2 Sig 0.6399
me4s0 Sg 0.6390

mdd - 0.6493
me2s0 S2 0.6425
me3s0 S8 0.6422
me2sl S? 0.5971
me2s2 S2 0.6010
me2s4 S2 0.5861
me2s3 S2 0.6031
me2sb S2 0.5924
mels0 Sg 0.5911

Table 2: 5’ss Models ranked by ROC analysis(top to bottom), and the corresponding maximum
Correlation Coefficients (CC).
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| Rank | Am, AKL;
1 LAGgt. ... .AGgt. ...
2 ...gt.AG. ...gt.AG.
3 TA.gt.... | TA.gt....
4 ...gtTA.. ...gtTA..
5 ...gt..GT | ...gt..GT
6 ...gtGT.. ...gtGT..
7 ...gt.CG. ...gt.CG.
8 ..TgtT... ..GgtG. ..
9 ...gt.GG. ..AgtC...
10 ...gtGG.. | ...gtCG..
11 ...gtCG.. | ...gt..AC
12 .TAgt. ... ...gtCC..
13 ..AgtC. .. ..CgtT. ..
14 ..gt.AT. | CT.gt....
15 ..gt.GT. | AG.gt....
16 ..gt..CG | .TGgt....
17 ..gt. AT ..gt.GT.
18 ..gt..CT | .TAgt....
19 ..GgtG. .. ..TgtC. ..
20 ..CgtA... | ...gtGG..

Table 3: Top 20 ranked constraints for me2s0. Lower letters refer to donor consensus positions.

Capitalized letters are positional dependencies. All first order constraints were imposed as default.
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‘ Rank ‘ AH; ‘ Sign ‘

1 ..Ggt..G. -
2 ...gt.AG. +
3 LAGgt. ... +
4 C..gt...C +
5 ...gtAA.. -
6 ..GgtT. .. +
7 ..GgtC. .. +
8 ..GgtA. .. -
9 ..gtTA. . -
10 ..Tgt..T. -
11 ..Tgt. .A. -

12 | .G.gt..C. | -

13 ...gtC.G +
14 .C.gt..C -
15 .T.gt..C -
16 ..Cgt..A -
17 ..Cgt..T. -
18 ..Agt..T -
19 ..Agt..A -
20 ..Cgt..G +

Table 4: Top 20 ranked constraints for me2x5 for 5’ss. + and - indicate whether the dinucleotide
is more or less frequent than expected under independence assumption, respectively. All first order

constraints were imposed by default.
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Models  Constraints CC

me2x2 St 0.6291
me2x3 5%273 0.6290
me2x4 S%127374 0.6252
me2x5 St o345 0.6229

me2x1 S? 0.6259
me3s0 S 0.6300
me2s0 S2 0.6172
me4s0 Sg 0.6075
mels0 Ss 0.5568

Table 5: 3’ss Models ranked by ROC analysis(top to bottom), and the corresponding maximum Correlation
Coefficients (CC).
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Sequence | me2x5 | MDD | me2s0 | WMM | odds ratio
ACGGTAAGT 1 2 5 26 184
TCGGTAAGT 2 3 12 114 77
ACGGTGAGT 3 17 18 90 11
GCGGTAAGT 4 14 10 56 3
ACGGTACGT 5 67 14 292 331
TCGGTGAGT 6 28 34 304 9
CAGGTAAGG 7 26 15 3 13
GAGGTAAGT 8 34 6 4 38
ATGGTAAGT 9 12 46 19 95
AAGGTAAGT 10 10 2 2 12
GACGTAAGT 11 41 136 86 10
CCGGTAAGT 12 1 7 17 22
CCGGTGAGT 13 7 22 68 18
CAGGTACGG 14 99 32 79 68
CAGGTAAGT 15 20 1 1 8
CAGGTAAGA 16 25 13 7 14
CGGGTAAGT 17 15 17 15 2
AAGGTACGT 18 54 8 46 233
AACGTAAGT 19 19 101 38 96
CAGGTGAGT 20 27 4 8 21

Table 6: Ranks of 5’ss sequences by different models.
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predicted positive

predicted negative

real positive

true positives, TP

false negatives, FN

real negative

false positives, FP

true negatives, TN

Table 7: Confusion Matrix
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