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ABSTRACT Environmental monitoring in public spaces can be used to identify
surfaces contaminated by persons with coronavirus disease 2019 (COVID-19) and
inform appropriate infection mitigation responses. Research groups have reported
detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on surfa-
ces days or weeks after the virus has been deposited, making it difficult to estimate
when an infected individual may have shed virus onto a SARS-CoV-2-positive surface,
which in turn complicates the process of establishing effective quarantine measures.
In this study, we determined that reverse transcription-quantitative PCR (RT-qPCR)
detection of viral RNA from heat-inactivated particles experiences minimal decay
over 7 days of monitoring on eight out of nine surfaces tested. The properties of the
studied surfaces result in RT-qPCR signatures that can be segregated into two mate-
rial categories, rough and smooth, where smooth surfaces have a lower limit of
detection. RT-qPCR signal intensity (average quantification cycle [Cq]) can be corre-
lated with surface viral load using only one linear regression model per material cat-
egory. The same experiment was performed with untreated viral particles on one
surface from each category, with essentially identical results. The stability of RT-qPCR
viral signal demonstrates the need to clean monitored surfaces after sampling to es-
tablish temporal resolution. Additionally, these findings can be used to minimize the
number of materials and time points tested and allow for the use of heat-inactivated
viral particles when optimizing environmental monitoring methods.

IMPORTANCE Environmental monitoring is an important tool for public health surveil-
lance, particularly in settings with low rates of diagnostic testing. Time between
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sampling public environments, such as hospitals or schools, and notifying stakehold-
ers of the results should be minimal, allowing decisions to be made toward contain-
ing outbreaks of coronavirus disease 2019 (COVID-19). The Safer At School Early
Alert program (SASEA) (https://saseasystem.org/), a large-scale environmental moni-
toring effort in elementary school and child care settings, has processed .13,000
surface samples for SARS-CoV-2, detecting viral signals from 574 samples. However,
consecutive detection events necessitated the present study to establish appropriate
response practices around persistent viral signals on classroom surfaces. Other
research groups and clinical labs developing environmental monitoring methods
may need to establish their own correlation between RT-qPCR results and viral load,
but this work provides evidence justifying simplified experimental designs, like
reduced testing materials and the use of heat-inactivated viral particles.

KEYWORDS COVID-19, RT-qPCR, SARS-CoV-2, environmental monitoring, heat-
inactivated, surface sampling, swab

Development and characterization of methods for environmental monitoring of
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain important

areas of research for identifying and mitigating potential outbreaks as the global pan-
demic continues. Environmental monitoring offers indirect detection of possibly infec-
tious individuals through noninvasive sampling. In spaces with relatively consistent
occupants, detection of SARS-CoV-2 from environmental samples can help identify co-
ronavirus disease 2019 (COVID-19)-infected individuals, ideally before further transmis-
sion. Environmental monitoring can also alert public health leadership to the potential
presence of an infection even in settings with low diagnostic testing uptake, allowing
for the implementation of enhanced nonpharmaceutical interventions (i.e., double
masking, increased hand hygiene, improved ventilation efforts) even in the absence of
positive diagnostic tests.

SARS-CoV-2 particles are shed by symptomatic and asymptomatic carriers (1) and
have been detected on various surfaces (2–5). Viral signatures have been demon-
strated to persist up to 4 weeks in bulk floor dust collected from a room with a quaran-
tined individual (6). Previous environmental monitoring studies have detected SARS-
CoV-2 on surfaces contaminated by infected individuals in hospitals and congregate
care facilities (6–10). Thus, indoor surface sampling can be valuable for detection of
infected persons indoors, where transmission risk is highest (11). The Safer At School
Early Alert program (SASEA) (https://saseasystem.org/) uses environmental monitoring
and collected over 13,000 surface swabs, but we need more information to clarify what
these data are telling us over time.

We sought to characterize temporal dynamics underlying detection of SARS-CoV-2
signals from surface swabs from a variety of common indoor surface types using
reverse transcription-quantitative PCR (RT-qPCR). The Centers for Disease Control and
Prevention (CDC) maintains that the risk of fomite transmission of SARS-CoV-2 is low
(12). This study makes no claims of attempting to understand the possibility of or
mechanisms behind infection of virus transmitted by fomites but rather on whether
and how negative and positive RT-qPCR detection from surface swabs can enable deci-
sion-making in outbreak mitigation, focused clinical testing of individuals, and safe
reopening of high-traffic, public spaces.

We used RT-qPCR to detect heat-inactivated viral particles on nine surface materials
and monitored the persistence of the heat-inactivated virus for 7 days. Each material—
acrylic, steel, glass, ceramic tile, melamine-finished particleboard (MFP), painted dry-
wall, vinyl flooring, and two different carpets (olefin and polyester)—was divided into
5-cm by 5-cm grids, and each 25-cm2 square surface of the grid was inoculated with
10 ml of either a dilution series of heat-inactivated SARS-CoV-2 particles or water. The
eight-point dilution series was based on viral genomic equivalents (GEs) as measured
by digital droplet PCR (ddPCR). The inoculum dried for 1 h before swabbing. Every 24 h
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postinoculation, an unswabbed section of each material grid was sampled, for a total
of 7 days, including the initial postinoculation swab.

To determine whether use of heat-inactivated viral particles in testing and validating
environmental monitoring methods reflects results obtained using untreated virus, we
compared detection of heat-inactivated SARS-CoV-2 (strain WA-1, SA-WA1/2020) and of
authentic, untreated SARS-CoV-2 (variant of concern Beta, isolate B.1.351, hCoV-19/USA/
MD-HP01542/2021) on two materials under biosafety level 3 (BSL-3) conditions.

Findings. Linear regression of signal intensity (average Cq of viral gene calls) on
elapsed time since inoculation (days) for each dilution showed minimal decay of viral RNA
on eight of nine surface types over 6 days (Fig. 1). The average decay slope for each sur-
face type (m-bar) did not differ significantly from zero (mean = 0.0407, standard deviation
[SD] =0.210). RT-qPCR signal decayed with time only on glass (m-bar = 0.401, SD =0.212,
differing from the population mean by.1.5 standard deviations).

A two-way repeated measure analysis of variance (ANOVA) on viral signal intensity
(average Cq) revealed that surface type explains more observed variation in Cq than
does time since inoculation at the highest concentration (5 � 105 GEs) (Fig. 2A). A
Kruskal-Wallis H test confirmed that mean Cqs differ significantly across surface types
(H = 60.86, P = 2.49 � 1029) (Fig. 2B), but not across days since inoculation (H = 1.34,
P = 0.97) (Fig. 2C). Pairwise Mann-Whitney U tests comparing ranked values of Cqs
from samples grouped by surface type highlight that both carpet materials (olefin and
polyester) are significantly different, after correcting for multiple comparisons (false
discovery rate [FDR]-Benjamini/Hochberg, alpha = 0.005), from all other surfaces, but
not from each other (Fig. 2B). Other pairwise, significant differences between materials
are summarized in Table S1 in the supplemental material. A clustermap of the U statis-
tic from the pairwise comparisons effectively clusters samples by material properties,
with rough surfaces clustering away from smooth ones (Fig. 2D).

Because RT-qPCR signal intensity for most surfaces was time invariant, time-col-
lapsed linear regression models relating viral spike-in concentration (log2 spike-in) to
average Cq act as standard curves for estimating viral load on different monitored
surfaces from Cq. After segregating samples based on the qualitative material catego-
ries of smooth or rough, linear regressions aggregating all time points yielded one

FIG 1 Scatterplots showing the average Cq values of RT-qPCR viral gene calls for corresponding heat-inactivated viral spike-in over 7 days. Viral spike-in
concentrations reported as GEs from ddPCR. Linear regressions of average Cq values on days since inoculation per spike-in were overlaid on the measured
data. The average decay slope (m-bar) is reported alongside each surface type.
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standard curve for smooth surfaces (m = 20.77, b = 40.41, r = 20.93) (Fig. 2E) and
another for rough surfaces (m = 20.52, b = 39.90, r = 20.84) (Fig. 2F). The reduced
slope of the latter curve stems from higher loss of spiked-in viral signal to the rough
surface matrix.

To ensure that viral signal stability was not a consequence of selection for resilient
viral particles through heat inactivation, we repeated a subset of experiments using in-
fectious virus (untreated) in a BSL-3 laboratory using the B.1.351/Beta variant of SARS-
CoV-2 originally identified in South Africa. Due to space limitations in the BSL-3 facility,
the untreated virus experiment only included two surface types, acrylic and carpet (ole-
fin) but used the same dilution series and sampling plan.

Results from untreated and heat-inactivated virus are concordant. Untreated virus
samples cluster with respect to surface type rather than virion status (heat inactivated
or untreated) (Fig. 2D). When evaluating acrylic and carpet (olefin) samples alone, a

FIG 2 (A to C) 3D scatterplots showing distribution of average Cq values of viral gene calls over 7 days for nine different surfaces inoculated with 5 � 105

GEs (nine surfaces for heat-inactivated virus [circles], two surfaces [acrylic and olefin carpet] for infectious virus [diamonds]). The distribution of Cqs differs
significantly across surface types (B), but not across days since inoculation (C). (D) Clustermap of the U statistic from pairwise Mann-Whitney U tests
between surface types. (E and F) Standard curves relating surface viral load (log2 spike-in) to average Cq values across all time points for smooth (E) and
rough (F) surface types.
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Kruskal-Wallis H test shows significant differences in the means of Cqs across all groups
when samples are grouped by surface type (H = 16.37, P = 0.00095) (see Fig. S1A in the
supplemental material), but not when grouped by virion status (H = 1.96, P = 0.161)
(Fig. S1B). Furthermore, linear regression on Cq from paired samples between the heat-
inactivated and untreated virus experiments show nearly exact correlation despite the
use of different variants (m = 1.05, r = 0.97) (Fig. S1C).

Discussion. We show that detecting SARS-CoV-2 RNA on indoor surfaces in envi-
ronments potentially exposed to COVID-19-infected individuals is effective across a va-
riety of surfaces and a range of initial viral loads. Our swabbing and RT-qPCR methods
have greater sensitivity from smooth surfaces (such as MFP—commonly found on
desktops—or vinyl flooring) than rough surfaces (carpet). The stability of the viral sig-
nal across time limits the ability to estimate when the surface was inoculated but dem-
onstrates that signal can be detected a week postexposure. There is a possibility that
viral signal could decay over a longer period of time, but because the motivation
behind this study was to improve temporal resolution over shorter periods, this was
beyond the scope of the present work. To improve temporal resolution, surfaces
swabbed for environmental monitoring should be cleaned with soap and water, fol-
lowing CDC recommendations (13), in order to remove viral signals (12). Previous work
with comparable methods for SARS-CoV-2 detection from surfaces demonstrated that
washing contaminated objects with household dishwashing detergent for $1 min
removed enough viral RNA traces so that only 20% of the severely contaminated
objects had detectable viral RNA. Furthermore, the average viral load of the washed
surfaces was reduced by;2.5 Cqs in comparison to untreated objects (14). Thus, clean-
ing monitored surfaces with soap and water improves the probability of distinction
between persistent or separate exposures in subsequent SARS-CoV-2 detection events.

Although direct inoculation of surfaces with viral particles does not represent inter-
action with an infected individual in a real-world scenario, we do directly show that
untreated and heat-inactivated SARS-CoV-2 particles have similar detectability and sta-
bility across surface types. These findings allow the use of heat-inactivated particles in
testing and validating environmental monitoring methods and remove the burden of
performing such experiments in BSL-3 laboratories.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
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