"""
Information-theoretic calculations
"""
import numpy as np
import pandas as pd
from sklearn import cross_validation
EPSILON = 100 * np.finfo(float).eps
[docs]def bin_range_strings(bins):
    """Given a list of bins, make a list of strings of those bin ranges
    Parameters
    ----------
    bins : list_like
        List of anything, usually values of bin edges
    Returns
    -------
    bin_ranges : list
        List of bin ranges
    >>> bin_range_strings((0, 0.5, 1))
    ['0-0.5', '0.5-1']
    """
    return ['{}-{}'.format(i, j) for i, j in zip(bins, bins[1:])]
 
def _check_prob_dist(x):
    if np.any(x < 0):
        raise ValueError('Each column of the input dataframes must be '
                         '**non-negative** probability distributions')
    try:
        if np.any(np.abs(x.sum() - np.ones(x.shape[1])) > EPSILON):
            raise ValueError('Each column of the input dataframe must be '
                             'probability distributions that **sum to 1**')
    except IndexError:
        if np.any(np.abs(x.sum() - 1) > EPSILON):
            raise ValueError('Each column of the input dataframe must be '
                             'probability distributions that **sum to 1**')
[docs]def binify(df, bins):
    """Makes a histogram of each column the provided binsize
    Parameters
    ----------
    data : pandas.DataFrame
        A samples x features dataframe. Each feature (column) will be binned
        into the provided bins
    bins : iterable
        Bins you would like to use for this data. Must include the final bin
        value, e.g. (0, 0.5, 1) for the two bins (0, 0.5) and (0.5, 1).
        nbins = len(bins) - 1
    Returns
    -------
    binned : pandas.DataFrame
        An nbins x features DataFrame of each column binned across rows
    """
    if bins is None:
        raise ValueError('Must specify "bins"')
    binned = df.apply(lambda x: pd.Series(np.histogram(x, bins=bins)[0]))
    binned.index = bin_range_strings(bins)
    # Normalize so each column sums to 1
    binned = binned / binned.sum().astype(float)
    return binned
 
[docs]def kld(p, q):
    """Kullback-Leiber divergence of two probability distributions pandas
    dataframes, p and q
    Parameters
    ----------
    p : pandas.DataFrame
        An nbins x features DataFrame, or (nbins,) Series
    q : pandas.DataFrame
        An nbins x features DataFrame, or (nbins,) Series
    Returns
    -------
    kld : pandas.Series
        Kullback-Lieber divergence of the common columns between the
        dataframe. E.g. between 1st column in p and 1st column in q, and 2nd
        column in p and 2nd column in q.
    Raises
    ------
    ValueError
        If the data provided is not a probability distribution, i.e. it has
        negative values or its columns do not sum to 1, raise ValueError
    Notes
    -----
    The input to this function must be probability distributions, not raw
    values. Otherwise, the output makes no sense.
    """
    try:
        _check_prob_dist(p)
        _check_prob_dist(q)
    except ValueError:
        return np.nan
    # If one of them is zero, then the other should be considered to be 0.
    # In this problem formulation, log0 = 0
    p = p.replace(0, np.nan)
    q = q.replace(0, np.nan)
    return (np.log2(p / q) * p).sum(axis=0)
 
[docs]def jsd(p, q):
    """Finds the per-column JSD betwen dataframes p and q
    Jensen-Shannon divergence of two probability distrubutions pandas
    dataframes, p and q. These distributions are usually created by running
    binify() on the dataframe.
    Parameters
    ----------
    p : pandas.DataFrame
        An nbins x features DataFrame.
    q : pandas.DataFrame
        An nbins x features DataFrame.
    Returns
    -------
    jsd : pandas.Series
        Jensen-Shannon divergence of each column with the same names between
        p and q
    Raises
    ------
    ValueError
        If the data provided is not a probability distribution, i.e. it has
        negative values or its columns do not sum to 1, raise ValueError
    """
    try:
        _check_prob_dist(p)
        _check_prob_dist(q)
    except ValueError:
        return np.nan
    weight = 0.5
    m = weight * (p + q)
    result = weight * kld(p, m) + (1 - weight) * kld(q, m)
    return result
 
[docs]def entropy(binned, base=2):
    """Find the entropy of each column of a dataframe
    Parameters
    ----------
    binned : pandas.DataFrame
        A nbins x features DataFrame of probability distributions, where each
        column sums to 1
    base : numeric
        The log-base of the entropy. Default is 2, so the resulting entropy
        is in bits.
    Returns
    -------
    entropy : pandas.Seires
        Entropy values for each column of the dataframe.
    Raises
    ------
    ValueError
        If the data provided is not a probability distribution, i.e. it has
        negative values or its columns do not sum to 1, raise ValueError
    """
    try:
        _check_prob_dist(binned)
    except ValueError:
        np.nan
    return -((np.log(binned) / np.log(base)) * binned).sum(axis=0)
 
[docs]def binify_and_jsd(df1, df2, pair, bins):
    binned1 = binify(df1, bins=bins).dropna(how='all', axis=1)
    binned2 = binify(df2, bins=bins).dropna(how='all', axis=1)
    binned1, binned2 = binned1.align(binned2, axis=1, join='inner')
    series = np.sqrt(jsd(binned1, binned2))
    series.name = pair
    return series
 
[docs]def cross_phenotype_jsd(data, groupby, bins, n_iter=100):
    """Jensen-Shannon divergence of features across phenotypes
    Parameters
    ----------
    data : pandas.DataFrame
        A (n_samples, n_features) Dataframe
    groupby : mappable
        A samples to phenotypes mapping
    n_iter : int
        Number of bootstrap resampling iterations to perform for the
        within-group comparisons
    n_bins : int
        Number of bins to binify the singles data on
    Returns
    -------
    jsd_df : pandas.DataFrame
        A (n_features, n_phenotypes^2) dataframe of the JSD between each
        feature between and within phenotypes
    """
    grouped = data.groupby(groupby)
    jsds = []
    seen = set([])
    for phenotype1, df1 in grouped:
        for phenotype2, df2 in grouped:
            pair = tuple(sorted([phenotype1, phenotype2]))
            if pair in seen:
                continue
            seen.add(pair)
            if phenotype1 == phenotype2:
                seriess = []
                bs = cross_validation.Bootstrap(df1.shape[0], n_iter=n_iter,
                                                train_size=0.5)
                for i, (ind1, ind2) in enumerate(bs):
                    df1_subset = df1.iloc[ind1, :]
                    df2_subset = df2.iloc[ind2, :]
                    seriess.append(
                        binify_and_jsd(df1_subset, df2_subset, None, bins))
                series = pd.concat(seriess, axis=1, names=None).mean(axis=1)
                series.name = pair
                jsds.append(series)
            else:
                series = binify_and_jsd(df1, df2, pair, bins)
                jsds.append(series)
    return pd.concat(jsds, axis=1)
 
[docs]def jsd_df_to_2d(jsd_df):
    """Transform a tall JSD dataframe to a square matrix of mean JSDs
    Parameters
    ----------
    jsd_df : pandas.DataFrame
        A (n_features, n_phenotypes^2) dataframe of the JSD between each
        feature between and within phenotypes
    Returns
    -------
    jsd_2d : pandas.DataFrame
        A (n_phenotypes, n_phenotypes) symmetric dataframe of the mean JSD
        between and within phenotypes
    """
    jsd_2d = jsd_df.mean().reset_index()
    jsd_2d = jsd_2d.rename(
        columns={'level_0': 'phenotype1', 'level_1': 'phenotype2', 0: 'jsd'})
    jsd_2d = jsd_2d.pivot(index='phenotype1', columns='phenotype2',
                          values='jsd')
    return jsd_2d + np.tril(jsd_2d.T, -1)