Source code for flotilla.visualize.expression

import matplotlib.pyplot as plt
import numpy as np

from .color import blue
from ..compute.expression import TwoWayGeneComparisonLocal


[docs]class TwoWayScatterViz(TwoWayGeneComparisonLocal): def __call__(self, **kwargs): self.plot(**kwargs)
[docs] def plot(self, ax=None): # co = [] # colors container # results = self.result_.get(["pValue", "log2_ratio", "isSig"]) # for label, (pVal, logratio, isSig) in results.iterrows(): # if (pVal < self.p_value_cutoff) and isSig: # if logratio > 0: # co.append(red) # elif logratio < 0: # co.append(green) # else: # raise Exception # else: # co.append(blue) # if ax is None: ax = plt.gca() ax.set_aspect('equal') vmin = np.min(np.c_[self.sample1, self.sample2]) ax.plot(self.sample1, self.sample2, 'o', color=blue, alpha=0.7, markeredgewidth=0.1) ax.set_xlabel("%s %s" % (self.sample_names[0], self.dtype)) ax.set_ylabel("%s %s" % (self.sample_names[1], self.dtype)) # ax.set_yscale('log', basey=2) # ax.set_xscale('log', basex=2) ax.set_xlim(xmin=max(vmin, 0)) ax.set_ylim(ymin=max(vmin, 0))
Olga B. Botvinnik is funded by the NDSEG fellowship and is a NumFOCUS John Hunter Technology Fellow.
Michael T. Lovci was partially funded by a fellowship from Genentech.
Partially funded by NIH grants NS075449 and HG004659 and CIRM grants RB4-06045 and TR3-05676 to Gene Yeo.