Calculate robust regression between the columns of X and y
| Parameters: | X : pandas.DataFrame 
 y : pandas.DataFrame 
 verbose : bool, optional 
 | 
|---|---|
| Returns: | out_I : pandas.Series 
 out_S : pandas.Series 
 out_T : pandas.Series 
 out_P : pandas.Series 
 | 
See also
Apply R calculation method on each column of X versus the values of y
| Parameters: | X : pandas.DataFrame 
 y : pandas.Series 
 method : function, optional 
 | 
|---|---|
| Returns: | r_coefficients : pandas.Series 
 p_values : pandas.Series 
 | 
See also
X and y are dataframes, returns slope, t-value and p-value of robust regression
| Parameters: | X : pandas.DataFrame 
 y : pandas.DataFrame 
 verbose : bool, optional 
 | 
|---|---|
| Returns: | slope : pandas.Series 
 | 
See also
Calcualte distance correlation between the columns of two dataframes
| Parameters: | X : pandas.DataFrame 
 y : pandas.DataFrame 
 verbose : bool, optional 
 | 
|---|---|
| Returns: | dc : pandas.Series 
 dr : pandas.Series 
 dvx : pandas.Series 
 dvy : pandas.Series 
 | 
See also
Calculate correlation (“R-value”) between two vectors
| Parameters: | s_1 : pandas.Series 
 s_2 : pandas.Series 
 method : function, optional 
 min_items : int, optional 
 | 
|---|---|
| Returns: | r_value : float 
 p_value : float 
 | 
Notes
If too few items overlap, return (np.nan, np.nan)
Calculate a GradientBoostingRegressor on predictor and target variables
| Parameters: | x : numpy.array 
 y : numpy.array 
 verbose : bool, optional 
 | 
|---|---|
| Returns: | classifier : sklearn.ensemble.GradientBoostingRegressor 
 | 
Calculate distance correlation between two vectors
Uses the distance correlation package from: https://github.com/andrewdyates/dcor
| Parameters: | x : numpy.array 
 y : numpy.array 
 | 
|---|---|
| Returns: | dc : float 
 dr : float 
 dvx : float 
 dvy : float 
 | 
Calculate an ExtraTreesRegressor on predictor and target variables
| Parameters: | x : numpy.array 
 y : numpy.array 
 n_estimators : int, optional 
 n_tries : int, optional 
 verbose : bool, optional 
 | 
|---|---|
| Returns: | classifier : sklearn.ensemble.ExtraTreesRegressor 
 oob_scores : numpy.array 
 | 
Calculate robust linear regression
| Parameters: | x : numpy.array 
 y : numpy.array 
 | 
|---|---|
| Returns: | intercept : float 
 slope : float 
 t_statistic : float 
 p_value : float 
 | 
Get the linear regression slope of x and y
| Parameters: | x : numpy.array 
 y : numpy.array 
 | 
|---|---|
| Returns: | slope : float 
 | 
get events that have not been started yet. generator sets started to True before returning an event
| Parameters: | mongodb : pymongo.Database 
 | 
|---|
Calculate spearman correlations between dataframes A and B
| Parameters: | A : pandas.DataFrame 
 B : pandas.DataFrame 
 axis : int 
 | 
|---|---|
| Returns: | correlations : pandas.DataFrame 
 | 
Notes
Use “applymap” to get just the R- and p-values of the resulting dataframe
>>> import pandas as pd
>>> import numpy as np
>>> A = pd.DataFrame(np.random.randn(100).reshape(5, 20))
>>> B = pd.DataFrame(np.random.randn(55).reshape(5, 11))
>>> correls = spearmanr_dataframe(A, B)
>>> correls.shape
(11, 20)
>>> spearman_r = correls.applymap(lambda x: x[0])
>>> spearman_p = correls.applymap(lambda x: x[1])
Calculate spearman r (with p-values) between two pandas series
| Parameters: | x : pandas.Series 
 y : pandas.Series 
 | 
|---|---|
| Returns: | r_value : float 
 p_value : float 
 |